リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of a novel bioactive titanium membrane with alkali treatment for bone regeneration」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of a novel bioactive titanium membrane with alkali treatment for bone regeneration

梅原 華子 広島大学

2021.03.23

概要

Titanium membranes are used as a barrier membrane
for guided bone regeneration (GBR) because of their
superior biocompatibility and mechanical strength1-3).
Titanium is a bioinert material, and as such, it does not
have a bioactive ability to accelerate bone formation4,5).
Therefore, various modification methods including
grit blasting, acid etching, titanium plasma spraying,
and other methods have been applied to modify
titanium parts such as implant bodies6-12). Among these
modification methods, chemical methods such as acid
etching or alkali treatment are often used because of
their simplicity6-14). A titanium surface modified by a
strong acid or alkali solution can form an apatite layer
when immersed in simulated body fluid (SBF)13-15). This
layer is expected to create a bioactive surface on thin
titanium membranes, which would be beneficial for GBR.
An alkali hydrothermal surface treatment was reported
to enhance bone integration of titanium implants16).
However, reports have been limited to assessing solid
titanium structures such as disks or implant bodies. In
addition, chemical treatment methods cause problematic
corrosion on the titanium structure. In fact, our previous
study demonstrated that an acid treatment significantly
decreased the mechanical strength of a thin titanium
membrane17). Meanwhile, alkali treatment is one of the
most extensively investigated methods for modifying
titanium surfaces, and its efficiency has been confirmed
by many reports18-20). ...

この論文で使われている画像

参考文献

1) Degidi M, Scarano A, Piattelli A. Regeneration of the alveolar

crest using titanium micromesh with autologous bone and a

resorbable membrane. J Oral Implantol 2003; 29: 86-90.

2) Her S, Kang T, Fien MJ. Titanium mesh as an alternative to

a membrane for ridge augmentation. J Oral Maxillofac Surg

2012; 70: 803-810.

3) Rakhmatia YD, Ayukawa Y, Furuhashi A, Koyano K. Current

barrier membranes: titanium mesh and other membranes

for guided bone regeneration in dental applications. J

Prosthodont Res 2013; 57: 3-14.

4) Cole BJ, Bostrom MP, Pritchard TL, Sumner DR, Tomin

E, Lane JM, et al. Use of bone morphogenetic protein 2 on

ectopic porous coated implants in the rat. Clin Orthop Relat

Res 1997; 345: 219-228.

5) Ferretti C, Ripamonti U. Human segmental mandibular

defects treated with naturally derived bone morphogenetic

proteins. J Craniofac Surg 2002; 13: 434-444.

6) Ban S, Iwaya Y, Kono H, Sato H. Surface modification of

titanium by etching in concentrated sulfuric acid. Dent Mater

2006; 22: 1115-1120.

7) Hamouda IM, Enan ET, Al-Wakeel EE, Yousef MK. Alkali and

heat treatment of titanium implant material for bioactivity.

Int J Oral Maxillofac Implants 2012; 27: 776-784.

8) Iwaya Y, Machigashira M, Kanbara K, Miyamoto M, Noguchi

K, Izumi Y, et al. Surface properties and biocompatibility of

acid-etched titanium. Dent Mater J 2008; 27: 415-421.

9) Jemat A, Ghazali MJ, Razali M, Otsuka Y. Surface

modifications and their effects on titanium dental implants.

Biomed Res Int 2015; 2015: 791725.

10) Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y.

Surface treatments of titanium dental implants for rapid

osseointegration. Dent Mater 2007; 23: 844-854.

11) Offermanns V, Andersen OZ, Riede G, Sillassen M,

Jeppesen CS, Almtoft KP, et al. Effect of strontium surfacefunctionalized implants on early and late osseointegration: A

histological, spectrometric and tomographic evaluation. Acta

Biomater 2018; 69: 385-394.

12) Shi X, Nakagawa M, Kawachi G, Xu L, Ishikawa K. Surface

modification of titanium by hydrothermal treatment in Mgcontaining solution and early osteoblast responses. J Mater

Sci Mater Med 2012; 23: 1281-1290.

13) Kokubo T, Miyaji F, Kim HM. Spontaneous formation of bone

like apatite layer on chemically treated titanium metals. J

Am Ceram Soc 1996; 79: 1127-1129.

14) Kono H, Miyamoto M, Ban S. Bioactive apatite coating on

titanium using an alternate soaking process. Dent Mater J

2007; 26: 186-193.

15) Kawai T, Takemoto M, Fujibayashi S, Akiyama H, Tanaka M,

Yamaguchi S, et al. Osteoinduction on acid and heat treated

porous Ti metal samples in canine muscle. PLoS One 2014; 9:

e88366.

16) Umehara H, Kobatake R, Doi K, Oki Y, Makihara Y, Kubo

T, et al. Histological and bone morphometric evaluation of

osseointegration aspects by alkali hydrothermally treated

implants. Appl Sci 2018; 8: 635.

17) Kobatake R, Doi K, Oki Y, Umehara H, Kawano H, Kubo T,

et al. Investigation of effective modification treatments for

titanium membranes. Appl Sci 2017; 10: 1022.

18) Camargo WA, Takemoto S, Hoekstra JW, Leeuwenburgh

SCG, Jansen JA, van den Beucken JJJP, et al. Effect of

surface alkali-based treatment of titanium implants on

ability to promote in vitro mineralization and in vivo bone

formation. Acta Biomater 2017; 15: 511-523.

19) Nishiguchi S, Fujibayashi S, Kim HM, Kokubo T, Nakamura

T. Biology of alkali- and heat-treated titanium implants. J

Biomed Mater Res A 2003; 67: 26-35.

20) Nishiguchi S, Kato H, Neo M, Oka M, Kim HM, Kokubo T, et

al. Alkali- and heat-treated porous titanium for orthopedic

implants. J Biomed Mater Res 2001; 54: 198-208.

21) Hatakeyama W, Taira M, Ikeda K, Sato H, Kihira H, Takemoto

S, et al. Bone regeneration of rat critical-size calvarial defects

using a collagen/porous-apatite composite: micro-CT analyses

and histological observations. J Oral Tissue Engin 2017; 15:

49-60.

22) Andrukhov O, Huber R, Shi B, Berner S, Rausch-Fan X,

Moritz A, et al. Proliferation, behavior, and differentiation

of osteoblasts on surfaces of different microroughness. Dent

Mater 2016; 32: 1374-1384.

23) Kim HM, Himeno T, Kawashita M, Lee JH, Kokubo T,

Nakamura T. Surface potential change in bioactive titanium

metal during the process of apatite formation in simulated

body fluid. J Biomed Mater Res A 2003; 67: 1305-1309.

24) Kokubo T, Pattanayak DK, Yamaguchi S, Takadama H,

Matsushita T, Kawai T, et al. Positively charged bioactive Ti

metal prepared by simple chemical and heat treatments. J R

Soc Interface 2010; 7: 503-513.

25) de Oliveira PT, Zalzal SF, Beloti MM, Rosa AL, Nanci

A. Enhancement of in vitro osteogenesis on titanium by

chemically produced nanotopography. J Biomed Mater Res A

2007; 80: 554-564.

26) Yao C, Slamovich EB, Webster TJ. Enhanced osteoblast

functions on anodized titanium with nanotube-like structures.

J Biomed Mater Res A 2008; 85: 157-166.

27) Goldman M, Juodzbalys G, Vilkinis V. Titanium surfaces

with nanostructures influence on osteoblasts proliferation: A

systematic review. J Oral Maxillofac Res 2014; 5: e1.

28) Karazisis D, Petronis S, Agheli H, Emanuelsson L,

Norlindh B, Johansson A, et al. The influence of controlled

surface nanotopography on the early biological events of

osseointegration. Acta Biomater 2017; 15: 559-571.

29) Mendonça G, Mendonça DB, Aragão FJ, Cooper LF.

Advancing dental implant surface technology-From micronto nanotopography. Biomaterials 2008; 29: 3822-3235.

30) Dalby MJ, McCloy D, Robertson M, Wilkinson CD, Oreffo

RO. Osteoprogenitor response to defined topographies with

nanoscale depths. Biomaterials 2006; 27: 1306-1315.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る