リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The Effects of Syndecan on Osteoblastic Cell Adhesion onto NANO-Zirconia Surface」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The Effects of Syndecan on Osteoblastic Cell Adhesion onto NANO-Zirconia Surface

孫 璐 東北大学

2020.09.25

概要

Purpose: Zirconia is one of the most promising implant materials due to its favorable physical, mechanical and biological properties. However, until now, we know little about the mechanism of osseointegration on zirconia. The purpose of this study is to evaluate the effect of Syndecan (Sdc) on osteoblastic cell (MC3T3-E1) adhesion and proliferation onto zirconia materials.

Materials and methods: The mirror-polished disks 15 mm in diameter and 1.5 mm in thick of commercial pure titanium (CpTi), 3mol% yttria-stabilized tetragonal zirconia polycrystalline (3Y-TZP) and Nano-Zirconia (NanoZr) are used in this study. MC3T3-E1 cells were seeded onto specimen surfaces and subjected to RNA interference (RNAi) for Syndecan- 1, Syndecan-2, Syndecan-3, and Syndecan-4. At 48h post-transfection, the cell morphology, actin cytoskeleton, and focal adhesion were observed using scanning electron microscopy or laser scanning confocal fluorescence microscopy. At 24h and 48h post-transfection, cell counting kit-8 (CCK-8) assay was used to investigate the cell proliferation.

Results: The cell morphology of MC3T3-E1 cells on CpTi, 3Y-TZP, and NanoZr changed into abnormal shape after gene silencing of Syndecan. Among the Syndecan family, Sdc-2 is responsible for NanoZr specific morphology regulation, via maintenance of cytoskeletal conformation without affecting cellular attachment. According to CCK-8 assay, Sdc-2 affects the osteoblastic cell proliferation onto NanoZr.

Conclusion: Within the limitation of this study, we suggest that Syndecan affect osteoblastic cell adhesion on CpTi, 3Y-TZP, and NanoZr. Sdc-2 is an important Heparin-sensitive cell membrane regulator in osteoblastic cell adhesion, specifically on NanoZr, through the organization of actin cytoskeleton and affects osteoblastic cell proliferation.

この論文で使われている画像

参考文献

[1]. Sicilia A, Cuesta S, Coma G, et al. Titanium allergy in dental implant patients: A clinical study on 1500 consecutive patients. Clin Oral Implants Res. 2008, 19(8): 823-835.

[2]. Bianco PD, Ducheyne P, Cuckler JM. Local accumulation of titanium released from a titanium implant in the absence of wear. J Biomed Mater Res. 1996, 31(2): 227-234.

[3]. Jung RE, Sailer I, Hämmerle CHF, et al. In vitro color changes of soft tissues caused by restorative materials. Int J Periodontics Restorative Dent. 2007, 27(3): 251.

[4]. Lawson NC, Burgess JO. Dental ceramics: a current review. Compend Contin Educ Dent. 2014, 35(3): 161-166.

[5]. Berge TI, Grønningsaeter AG. Survival of single crystal sapphire implants supporting mandibular overdentures. Clin Oral Implants Res. 2000, 11(2): 154-162.

[6]. Scarano A, Piattelli M, Caputi S, et al. Bacterial Adhesion on Commercially Pure Titanium and Zirconium Oxide Disks: An In Vivo Human Study. J Periodontol. 2004, 75(2): 292- 296.

[7]. Nascimento Do C, Pita MS, Fernandes FHNC, et al. Bacterial adhesion on the titanium and zirconia abutment surfaces. Clin Oral Implants Res. 2014, 25(3): 337-343.

[8]. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials. 1999, 20(1): 1-25.

[9]. Hisbergues M, Vendeville S, Vendeville P. Review zirconia: Established facts and perspectives for a biomaterial in dental implantology. J Biomed Mater Res - Part B Appl Biomater. 2009, 88(2): 519-529.

[10]. Han JM, Hong G, Lin H, et al. Biomechanical and histological evaluation of the osseointegration capacity of two types of zirconia implant. Int J Nanomedicine. 2016, 11: 6507.

[11]. Gahlert M, Burtscher D, Grunert I, et al. Failure analysis of fractured dental zirconia implants. Clin Oral Implants Res. 2012, 23(3): 287-293.

[12]. Lange FF, Dunlop GL, Davis BI. Degradation During Aging of Transformation- Toughened ZrO2-Y2O3 Materials at 250°C. J Am Ceram Soc. 1986, 69(3): 237-240.

[13]. Sato H, Yamada K, Pezzotti G, et al. Mechanical properties of dental zirconia ceramics changed with sandblasting and heat treatment. Dent Mater J. 2008, 27(3): 408-414.

[14]. Yamashita D, Machigashira M, Miyamoto M, et al. Effect of surface roughness on initial responses of osteoblast-like cells on two types of zirconia. Dent Mater J. 2009, 28(4): 461- 470.

[15]. Benzaid R, Chevalier J, Saâdaoui M, et al. Fracture toughness, strength and slow crack growth in a ceria stabilized zirconia-alumina nanocomposite for medical applications. Biomaterials. 2008, 29(27): 3636-3641.

[16]. Hasenbein ME, Andersen TT, Bizios R. Micropatterned surfaces modified with select peptides promote exclusive interactions with osteoblasts. Biomaterials. 2002, 23(19): 3937-3942.

[17]. Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000, 21(7): 667-681. [18]. Anselme K, Bigerelle M, Noel B, et al. Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. J Biomed Mater Res. 2000, 49(2): 155-166.

[19]. Okamoto K, Matsuura T, Hosokawa R, et al. RGD peptides regulate the specific adhesion scheme of osteoblasts to hydroxyapatite but not to titanium. J Dent Res. 1998, 77(3): 481- 487.

[20]. Luo F, Hong G, Matsui H, et al. Initial osteoblast adhesion and subsequent differentiation on zirconia surfaces are regulated by integrins and heparin-sensitive molecule. Int J Nanomedicine. 2018, 13: 7657.

[21]. Sim B, Cladera J, O’Shea P. Fibronectin interactions with osteoblasts: Identification of a non-integrin-mediated binding mechanism using a real-time fluorescence binding assay. J Biomed Mater Res - Part A. 2004, 68(2): 352-359.

[22]. Lim CC, Multhaupt HAB, Couchman JR. Cell surface heparan sulfate proteoglycans control adhesion and invasion of breast carcinoma cells. Mol Cancer. 2015, 14(1): 15.

[23]. Woods A, Couchman JR. Syndecan 4 heparan sulfate proteoglycan is a selectively enriched and widespread focal adhesion component. Mol Biol Cell. 1994, 5(2): 183-192.

[24]. Hozumi K, Kobayashi K, Katagiri F, et al. Syndecan- and integrin-binding peptides synergistically accelerate cell adhesion. FEBS Lett. 2010, 584(15): 3381-3385.

[25]. Saoncella S, Echtermeyer F, Denhez F, et al. Syndecan-4 signals cooperatively with integrins in a Rho-dependent manner in the assembly of focal adhesions and actin stress fibers. P Natl Acad Sci USA. 1999, 96(6): 2805-2810.

[26]. Woods A, Couchman JR. Syndecan-4 and focal adhesion function. Curr Opin Cell Biol. 2001, 13(5): 578-583.

[27]. Couchman JR, Woods A. Syndecan-4 and integrins: Combinatorial signaling in cell adhesion. J Cell Sci. 1999, 112(20): 3415-3420.

[28]. Tsukuma K, Shimada M. Strength, fracture toughness and Vickers hardness of CeO2- stabilized tetragonal ZrO2 polycrystals (Ce-TZP). J Mater Sci. 1985, 20(4): 1178-1184.

[29]. Tsukuma K. Mechanical properties and thermal stability of CeO/sub 2/containing tetragonal zirconia polycrystals. Am Ceram Soc Bull. 1986, 65(10): 1386-1389.

[30]. Nishizaki M, Komasa S, Taguchi Y, et al. Bioactivity of NANOZR induced by alkali treatment. Int J Mol Sci. 2017, 18(4): 780.

[31]. Nawa M, Nakamoto S, Sekino T, et al. Tough and Strong Ce-TZP / Alumina Nanocomposites Doped with Titania. Ceram Int. 1998, 24(7): 497-506.

[32]. Sudo H, Kodama H A, Amagai Y, et al. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol. 1983, 96(1): 191-198.

[33]. Liu Q, Cen L, Yin S, et al. A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and β-TCP ceramics. Biomaterials. 2008, 29(36): 4792-4799.

[34]. Zigmond SH. Signal transduction and actin filament organization. Curr Opin Cell Biol. 1996, 8(1): 66-73.

[35]. Mansouri R, Hay E, Marie P J, et al. Role of syndecan-2 in osteoblast biology and pathology. BoneKEy reports, 2015, 4.

[36]. Bass M D, Morgan M R, Humphries M J. Integrins and syndecan-4 make distinct, but critical, contributions to adhesion contact formation. Soft Matter. 2007, 3(3): 372-376.

[37]. Rottner K, Faix J, Bogdan S, et al. Actin assembly mechanisms at a glance. J Cell Sci. 2017, 130(20): 3427-3435.

[38]. Kohal R J, Weng D, Bächle M, et al. Loaded custom-made zirconia and titanium implants show similar osseointegration: an animal experiment. J Periodontol. 2004, 75(9): 1262- 1268.

[39]. Couchman J R. Syndecans: proteoglycan regulators of cell - surface microdomains? Nat Rev Mol Cell Bio. 2003, 4(12), 926-938.

[40]. Chen Y, Zhu J, Lum P Y, et al. Variations in DNA elucidate molecular networks that cause disease. Nature. 2008, 452(7186): 429-435.

[41]. Takeda K, Shimozono R, Noguchi T, et al. Apoptosis signal-regulating kinase (ASK) 2 functions as a mitogen-activated protein kinase kinase kinase in a heteromeric complex with ASK1. J Biol Chem. 2007, 282(10): 7522-7531.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る