リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Rapid Whole-Body FDG PET/MRI in Oncology Patients: Utility of Combining Bayesian Penalised Likelihood PET Reconstruction and Abbreviated MRI」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Rapid Whole-Body FDG PET/MRI in Oncology Patients: Utility of Combining Bayesian Penalised Likelihood PET Reconstruction and Abbreviated MRI

Inukai, Junko I. Nogami, Munenobu Tachibana, Miho Zeng, Feibi Nishitani, Tatsuya Kubo, Kazuhiro Murakami, Takamichi 神戸大学

2023.06

概要

This study evaluated the diagnostic value of a rapid whole-body fluorodeoxyglucose (FDG) positron emission tomography (PET)/magnetic resonance imaging (MRI) approach, combining Bayesian penalised likelihood (BPL) PET with an optimised β value and abbreviated MRI (abb-MRI). The study compares the diagnostic performance of this approach with the standard PET/MRI that utilises ordered subsets expectation maximisation (OSEM) PET and standard MRI (std-MRI). The optimal β value was determined by evaluating the noise-equivalent count (NEC) phantom, background variability, contrast recovery, recovery coefficient, and visual scores (VS) for OSEM and BPL with β100–1000 at 2.5-, 1.5-, and 1.0-min scans, respectively. Clinical evaluations were conducted for NECpatient, NECdensity, liver signal-to-noise ratio (SNR), lesion maximum standardised uptake value, lesion signal-to-background ratio, lesion SNR, and VS in 49 patients. The diagnostic performance of BPL/abb-MRI was retrospectively assessed for lesion detection and differentiation in 156 patients using VS. The optimal β values were β600 for a 1.5-min scan and β700 for a 1.0-min scan. BPL/abb-MRI at these β values was equivalent to OSEM/std-MRI for a 2.5-min scan. By combining BPL with optimal β and abb-MRI, rapid whole-body PET/MRI could be achieved in ≤1.5 min per bed position, while maintaining comparable diagnostic performance to standard PET/MRI.

この論文で使われている画像

関連論文

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

Huellner, M.W.; Appenzeller, P.; Kuhn, F.P.; Husmann, L.; Pietsch, C.M.; Burger, I.A.; Porto, M.; Delso, G.; von Schulthess,

G.K.; Veit-Haibach, P. Whole-body nonenhanced PET/MR versus PET/CT in the staging and restaging of cancers: Preliminary

observations. Radiology 2014, 273, 859–869. [CrossRef]

Nakamoto, Y.; Kitajima, K.; Toriihara, A.; Nakajo, M.; Hirata, K. Recent topics of the clinical utility of PET/MRI in oncology and

neuroscience. Ann. Nucl. Med. 2022, 36, 798–803. [CrossRef] [PubMed]

Chilcott, A.K.; Bradley, K.M.; McGowan, D.R. Effect of a Bayesian Penalized Likelihood PET Reconstruction Compared with

Ordered Subset Expectation Maximisation on Clinical Image Quality Over a Wide Range of Patient Weights. AJR Am. J. Roentgenol.

2018, 210, 153–157. [CrossRef] [PubMed]

Teoh, E.J.; McGowan, D.R.; Macpherson, R.E.; Bradley, K.M.; Gleeson, F.V. Phantom and Clinical Evaluation of the Bayesian

Penalized Likelihood Reconstruction Algorithm Q.Clear on an LYSO PET/CT System. J. Nucl. Med. 2015, 56, 1447–1452.

[CrossRef] [PubMed]

Lindstrom, E.; Sundin, A.; Trampal, C.; Lindsjo, L.; Ilan, E.; Danfors, T.; Antoni, G.; Sorensen, J.; Lubberink, M. Evaluation

of Penalized-Likelihood Estimation Reconstruction on a Digital Time-of-Flight PET/CT Scanner for (18)F-FDG Whole-Body

Examinations. J. Nucl. Med. 2018, 59, 1152–1158. [CrossRef]

Tian, D.; Yang, H.; Li, Y.; Cui, B.; Lu, J. The effect of Q.Clear reconstruction on quantification and spatial resolution of 18F-FDG

PET in simultaneous PET/MR. EJNMMI Phys. 2022, 9, 1. [CrossRef]

Kim, S.Y.; Cho, N.; Hong, H.; Lee, Y.; Yoen, H.; Kim, Y.S.; Park, A.R.; Ha, S.M.; Lee, S.H.; Chang, J.M.; et al. Abbreviated

Screening MRI for Women with a History of Breast Cancer: Comparison with Full-Protocol Breast MRI. Radiology 2022, 305,

213310. [CrossRef]

Yokoo, T.; Masaki, N.; Parikh, N.D.; Lane, B.F.; Feng, Z.; Mendiratta-Lala, M.; Lee, C.H.; Khatri, G.; Marsh, T.L.; Shetty, K.; et al.

Multicenter Validation of Abbreviated MRI for Detecting Early-Stage Hepatocellular Carcinoma. Radiology 2023, 307, e220917.

[CrossRef]

Yamaguchi, T.; Sofue, K.; Ueshima, E.; Ueno, Y.; Tsujita, Y.; Yabe, S.; Shirakawa, S.; Toyama, H.; Hori, M.; Fukumoto, T.;

et al. Abbreviated Gadoxetic Acid-Enhanced MRI for the Detection of Liver Metastases in Patients with Potentially Resectable

Pancreatic Ductal Adenocarcinoma. J. Magn. Reson. Imaging 2022, 56, 725–736. [CrossRef]

Kang, Z.; Min, X.; Weinreb, J.; Li, Q.; Feng, Z.; Wang, L. Abbreviated Biparametric Versus Standard Multiparametric MRI for

Diagnosis of Prostate Cancer: A Systematic Review and Meta-Analysis. AJR Am. J. Roentgenol. 2019, 212, 357–365. [CrossRef]

Grant, A.M.; Deller, T.W.; Khalighi, M.M.; Maramraju, S.H.; Delso, G.; Levin, C.S. NEMA NU 2-2012 performance studies for the

SiPM-based ToF-PET component of the GE SIGNA PET/MR system. Med. Phys. 2016, 43, 2334. [CrossRef] [PubMed]

Fukukita, H.; Suzuki, K.; Matsumoto, K.; Terauchi, T.; Daisaki, H.; Ikari, Y.; Shimada, N.; Senda, M. Japanese guideline for

the oncology FDG-PET/CT data acquisition protocol: Synopsis of Version 2.0. Ann. Nucl. Med. 2014, 28, 693–705. [CrossRef]

[PubMed]

Kurita, Y.; Ichikawa, Y.; Nakanishi, T.; Tomita, Y.; Hasegawa, D.; Murashima, S.; Hirano, T.; Sakuma, H. The value of Bayesian

penalized likelihood reconstruction for improving lesion conspicuity of malignant lung tumors on (18)F-FDG PET/CT: Comparison with ordered subset expectation maximisation reconstruction incorporating time-of-flight model and point spread function

correction. Ann. Nucl. Med. 2020, 34, 272–279. [CrossRef]

Miwa, K.; Wagatsuma, K.; Nemoto, R.; Masubuchi, M.; Kamitaka, Y.; Yamao, T.; Hiratsuka, S.; Yamaguchi, M.; Yoshii, T.;

Kobayashi, R.; et al. Detection of sub-centimeter lesions using digital TOF-PET/CT system combined with Bayesian penalized

likelihood reconstruction algorithm. Ann. Nucl. Med. 2020, 34, 762–771. [CrossRef]

Diagnostics 2023, 13, 1871

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

16 of 16

Zanoni, L.; Argalia, G.; Fortunati, E.; Malizia, C.; Allegri, V.; Calabro, D.; Civollani, S.; Campana, D.; Fanti, S.; Ambrosini, V. Can

Q.Clear reconstruction be used to improve [68 Ga]Ga-DOTANOC PET/CT image quality in overweight NEN patients? Eur. J.

Nucl. Med. Mol. Imaging 2022, 49, 1607–1612. [CrossRef]

Caribe, P.; Koole, M.; D’Asseler, Y.; Van Den Broeck, B.; Vandenberghe, S. Noise reduction using a Bayesian penalized-likelihood

reconstruction algorithm on a time-of-flight PET-CT scanner. EJNMMI Phys. 2019, 6, 22. [CrossRef]

Te Riet, J.; Rijnsdorp, S.; Roef, M.J.; Arends, A.J. Evaluation of a Bayesian penalized likelihood reconstruction algorithm for

low-count clinical (18)F-FDG PET/CT. EJNMMI Phys. 2019, 6, 32. [CrossRef] [PubMed]

Ribeiro, D.; Hallett, W.; Howes, O.; McCutcheon, R.; Nour, M.M.; Tavares, A.A.S. Assessing the impact of different penalty factors

of the Bayesian reconstruction algorithm Q.Clear on in vivo low count kinetic analysis of [(11)C]PHNO brain PET-MR studies.

EJNMMI Res. 2022, 12, 11. [CrossRef] [PubMed]

Texte, E.; Gouel, P.; Thureau, S.; Lequesne, J.; Barres, B.; Edet-Sanson, A.; Decazes, P.; Vera, P.; Hapdey, S. Impact of the Bayesian

penalized likelihood algorithm (Q.Clear(R)) in comparison with the OSEM reconstruction on low contrast PET hypoxic images.

EJNMMI Phys. 2020, 7, 28. [CrossRef]

Svirydenka, H.; Muehlematter, U.J.; Nagel, H.W.; Delso, G.; Ferraro, D.A.; Kudura, K.; Burger, I.A.; Ter Voert, E. (68)Ga-PSMA-11

dose reduction for dedicated pelvic imaging with simultaneous PET/MR using TOF BSREM reconstructions. Eur. Radiol. 2020,

30, 3188–3197. [CrossRef]

Yoshii, T.; Miwa, K.; Yamaguchi, M.; Shimada, K.; Wagatsuma, K.; Yamao, T.; Kamitaka, Y.; Hiratsuka, S.; Kobayashi, R.; Ichikawa,

H.; et al. Optimization of a Bayesian penalized likelihood algorithm (Q.Clear) for (18)F-NaF bone PET/CT images acquired over

shorter durations using a custom-designed phantom. EJNMMI Phys. 2020, 7, 56. [CrossRef] [PubMed]

Matti, A.; Lima, G.M.; Pettinato, C.; Pietrobon, F.; Martinelli, F.; Fanti, S. How Do the More Recent Reconstruction Algorithms

Affect the Interpretation Criteria of PET/CT Images? Nucl. Med. Mol. Imaging 2019, 53, 216–222. [CrossRef] [PubMed]

Wu, Z.; Guo, B.; Huang, B.; Zhao, B.; Qin, Z.; Hao, X.; Liang, M.; Xie, J.; Li, S. Does the beta regularization parameter of bayesian

penalized likelihood reconstruction always affect the quantification accuracy and image quality of positron emission tomography

computed tomography? J. Appl. Clin. Med. Phys. 2021, 22, 224–233. [CrossRef]

Rijnsdorp, S.; Roef, M.J.; Arends, A.J. Impact of the Noise Penalty Factor on Quantification in Bayesian Penalized Likelihood

(Q.Clear) Reconstructions of (68)Ga-PSMA PET/CT Scans. Diagnostics 2021, 11, 847. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る