リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Surface Modification of Carbon Fiber-Polyetheretherketone Composite to Impart Bioactivity by Using Apatite Nuclei」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Surface Modification of Carbon Fiber-Polyetheretherketone Composite to Impart Bioactivity by Using Apatite Nuclei

Yamane, Yuya Yabutsuka, Takeshi Takaoka, Yusuke Ishizaki, Chihiro Takai, Shigeomi Fujibayashi, Shunsuke 京都大学 DOI:10.3390/ma14216691

2021.11.06

概要

The authors aimed to impart the apatite-forming ability to 50 wt% carbon fiber-polyetheretherketone composite (50C-PEEK), which has more suitable mechanical properties as artificial bone materials than pure PEEK. First, the 50C-PEEK was treated with sulfuric acid in a short time to form pores on the surface. Second, the surface of the 50C-PEEK was treated with oxygen plasma to improve the hydrophilicity. Finally, fine particles of calcium phosphate, which the authors refer to as “apatite nuclei”, were precipitated on the surface of the 50C-PEEK by soaking in an aqueous solution containing multiple inorganic ions such as phosphate and calcium (modified-SBF) at pH 8.20, 25 °C. The 50C-PEEK without the modified-SBF treatment did not show the formation of apatitic phase even after immersion in simulated body fluid (SBF) for 7 days. The 50C-PEEK treated with the modified-SBF showed the formation of apatitic phase on the entire surface within 1 day in the SBF. The apatite nuclei-precipitated 50C-PEEK will be expected as a new artificial bone material with high bioactivity that is obtained without complicated fabrication processes.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Rho, J.Y.; Ashman, R.B.; Turner, C.H. Young’s modulus of trabecular and cortical bone material: Ultrasonic and microtensile

measurements. J. Biomech. 1993, 26, 111–119. [CrossRef]

Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants—A

review. Prog. Mater. Sci. 2009, 54, 397–425. [CrossRef]

Niinomi, M. Recent metallic materials for biomedical applications. Metall. Mater. Trans. A 2002, 33, 477–486. [CrossRef]

Sumitomo, N.; Noritake, K.; Hattori, T.; Morikawa, K.; Niwa, S.; Sato, K.; Niinomi, M. Experiment study on fracture fixation

with low rigidity titanium alloy: Plate fixation of tibia fracture model in rabbit. J. Mater. Sci. Mater. Med. 2008, 19, 1581–1586.

[CrossRef]

Kurtz, S.M.; Devine, J.N. PEEK Biomaterials in Trauma, Orthopedic, and Spinal Implants. Biomaterials 2007, 28, 4845–4869.

[CrossRef]

TECAPEEK® CM XP111 BLACK, Ensinger Special Polymers. Available online: https://www.ensingerspi.com/compound.cfm?

page=compound&compound=XP-111 (accessed on 22 October 2021).

Mitsubishi Chemical Advanced Materials Ketron® 1000 PEEK, Extruded Unfilled Polyetherether Ketone (ASTM Product Data

Sheet). Available online: http://qepp.matweb.com/search/DataSheet.aspx?Bassnum=P1SM12A (accessed on 22 October 2021).

Dorozhkin, S.V. Calcium Orthophosphates: Applications in Nature, Biology and Medicine. Materials 2009, 2, 399–498. [CrossRef]

Neo, M.; Nakamura, T.; Ohtsuki, C.; Kokubo, T.; Yamamuro, T. Apatite formation on three kinds of bioactive material at an early

stage in vivo: A comparative study by transmission electron microscopy. J. Biomed. Mater. Res. 1993, 27, 999–1006. [CrossRef]

Ma, R.; Tang, T. Current strategies to improve the bioactivity of PEEK. Int. J. Mol. Sci. 2004, 15, 5426–5445. [CrossRef]

Kizuki, T.; Matsushita, T.; Kokubo, T. Apatite-forming PEEK with TiO2 surface layer coating. J. Mater. Sci. Mater. Med. 2015, 26, 41.

[CrossRef]

Shimizu, T.; Fujibayashi, S.; Yamaguchi, S.; Yamamoto, K.; Otsuki, B.; Takemoto, M.; Tsukanaka, M.; Kizuki, T.; Matsushita, T.;

Kokubo, T.; et al. Bioactivity of sol-gel-derived TiO2 coating on polyetheretherketone: In vitro and in vivo studies. Acta Biomater.

2016, 35, 305–317. [CrossRef]

Zhao, Y.; Wong, H.M.; Wang, W.; Li, P.; Xu, Z.; Chong, E.Y.W.; Yan, C.H.; Yeung, K.W.K.; Chu, P.K. Cytocompatibility, osseointegration, and bioactivity of three-dimensional porous and nanostructured network on polyetheretherketone. Biomaterials 2013, 34,

9264–9277. [CrossRef] [PubMed]

Miyazaki, T.; Matsunami, C.; Shirosaki, Y. Bioactive carbon–PEEK composites prepared by chemical surface treatment. Mater. Sci.

Eng. C 2017, 70, 71–75. [CrossRef] [PubMed]

Lui, F.H.Y.; Mobbs, R.J.; Wang, Y.; Koshy, P.; Lucien, F.P.; Zhou, D.; Sorrell, C.C. Dynamic Mineralization: Low-Temperature, Rapid,

and Multidirectional Process to Encapsulate Polyether-Ether-Ketone with Carbonate-Rich Hydroxyapatite for Osseointegration.

Adv. Mater. Interface 2021, 8, 2100333. [CrossRef]

Prochor, P.; Mierzejewska, Z.A. Bioactivity of PEEK GRF30 and Ti6Al4V SLM in Simulated Body Fluid and Hank’s Balanced Salt

Solution. Materials 2021, 14, 2059. [CrossRef]

ISO. Implants for Surgery: In Vitro Evaluation for Apatite-Forming Ability of Implant Materials (ISO 23317:2014, IDT); International

Organization for Standardization: Geneva, Switzerland, 2014.

Yao, T.; Hibino, M.; Yamaguchi, S.; Okada, H. Method for Stabilizing Calcium Phosphate Fine Particles, Process for Production of

Calcium Phosphate Fine Particles by Utilizing the Method, and Use Thereof. U.S. Patent 8,178,066, 15 May 2012. Japanese Patent,

5,261,712, 10 May 2013.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Materials 2021, 14, 6691

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

13 of 13

Yao, T.; Hibino, M.; Yabutsuka, T. Method for Producing Bioactive Composites. U.S. Patent 8,512,732, 20 August 2013. Japanese

Patent, 5,252,399, 26 April 2013.

Yabutsuka, T.; Fukushima, K.; Hiruta, T.; Takai, S.; Yao, T. Effect of pores formation process and oxygen plasma treatment to

hydroxyapatite formation on bioactive PEEK prepared by incorporation of precursor of apatite. Mater. Sci. Eng. C 2017, 81,

349–358. [CrossRef] [PubMed]

Yabutsuka, T.; Fukushima, K.; Hiruta, T.; Takai, S.; Yao, T. Fabrication of bioactive fiber-reinforced PEEK and MXD6 by

incorporation of precursor of apatite. J. Biomed. Mater. Res. B Appl. Biomater. 2018, 106, 2254–2265. [CrossRef]

Ishizaki, C.; Yabutsuka, T.; Takai, S. Development of Apatite Nuclei Precipitated Carbon Nanotube-Polyether Ether Ketone

Composite with Biological and Electrical Properties. Coating 2020, 10, 191. [CrossRef]

Masamoto, K.; Fujibayashi, S.; Yabutsuka, T.; Hiruta, T.; Otsuki, B.; Okuzu, Y.; Goto, K.; Shimizu, T.; Shimizu, Y.; Ishizaki, C.;

et al. In vivo and in vitro bioactivity of a “precursor of apatite” treatment on polyetheretherketone. Acta Biomater. 2019, 91, 48–59.

[CrossRef]

Zamin, H.; Yabutsuka, T.; Takai, S.; Sakaguchi, H. Role of Magnesium and the Effect of Surface Roughness on the HydroxyapatiteForming Ability of Zirconia Induced by Biomimetic Aqueous Solution Treatment. Materials 2020, 13, 3045. [CrossRef]

Hashimoto, N.; Yabutsuka, T.; Takai, S. Development of Bioactive Zirconium-Tin Alloy by Combination of Pores Formation and

Apatite Nuclei Deposition. IET Nanobiotechnol. 2020, 14, 688–694. [CrossRef]

Tas, A.C. The use of physiological solutions or media in calcium phosphate synthesis and processing. Acta Biomater. 2014, 10,

1771–1792. [CrossRef] [PubMed]

Nancollas, G.H.; Tomazic, B. Growth of Growth of calcium phosphate on hydroxyapatite crystals. Effect of supersaturation and

ionic medium. J. Phys. Chem. 1974, 78, 2218–2225. [CrossRef]

Solomons, T.W.G.; Fryhle, C.B. Reactions of Aromatic Compounds. In Organic Chemistry, 7th ed.; Wiley: New York, NY, USA,

2000; pp. 661–713.

Comyn, J.; Mascia, L.; Xiao, G.; Parker, B.M. Plasma-treatment of polyetheretherketone (PEEK) for adhesive bonding. Int. J. Adhe.

Adhes. 1996, 16, 97–104. [CrossRef]

Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [CrossRef]

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る