リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Hydrothermal Gelation of Pure Cellulose Nanofiber Dispersions」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Hydrothermal Gelation of Pure Cellulose Nanofiber Dispersions

Suenaga, Shin Osada, Mitsumasa 信州大学 DOI:10.1021/acsapm.9b00076

2022.03.10

概要

The gelation of cellulose nanofibers (CNFs) through conventional cross-linking or reprecipitation requires the use of additives. Here, for the first time the gelation of pure CNF dispersions has been achieved solely by mechanical disintegration and a hydrothermal process without chemical modification. Different concentrations of cellulose powder were dispersed in water, following which these CNF dispersions were subjected to hydrothermal treatment at 160 degrees C for different lengths of time in a sealed reactor. Self-sustaining hydrogels with no discoloration were obtained. The chemical properties and crystal structures of the CNFs were essentially unchanged following hydrothermal treatment. Although the molecular mass of the cellulose was slightly reduced, the polymer density of cellulose at the same hydrodynamic radius was unchanged by hydrothermal treatment. Hence, chemically cross-linked structures did not form during the hydrothermal process. Instead, physical network structures developed within the CNF hydrogels, which increased the mechanical strength. Moreover, this network structure and therefore the strength of the hydrogel could be improved by increasing the mechanical disintegration time or the cellulose concentration of the CNF dispersion. To ensure sufficient hydrothermal gelation, it was important that the CNF dispersion had a storage modulus greater than 20 Pa.

この論文で使われている画像

参考文献

(1)

Saito, T.; Kimura, S.; Nishiyama, Y.;

Isogai, A., Cellulose Nanofibers Prepared by

23

TEMPO-Mediated

Oxidation

of

Native

Cellulose, Biomacromolecules 2007, 8, 2485–

2491.

(2)

Partial Deacetylation, ACS Sustainable Chem.

Eng. 2016, 4, 4385–4395.

(6)

Fan,

Y.;

Saito,

T.;

Isogai,

A.,

Kose, R.; Mitani, I.; Kasai, W.; Kondo,

T., “Nanocellulose” As a Single Nanofiber

Preparation of Chitin Nanofibers from Squid

Prepared

from

Pellicle

Secreted

by

Pen β-Chitin by Simple Mechanical Treatment

Gluconacetobacter xylinus Using Aqueous

under Acid Conditions, Biomacromolecules

Counter Collision, Biomacromolecules 2011,

2008, 9, 1919–1923.

12, 716–720.

(3) Ifuku, S.; Nogi, M.; Abe, K.; Yoshioka,

(7) Watanabe, Y.; Kitamura, S.; Kawasaki,

M.; Morimoto, M.; Saimoto, H.; Yano, H.,

K.; Kato, T.; Uegaki, K.; Ogura, K.; Ishikawa,

Preparation of Chitin Nanofibers with a

K., Application of a Water Jet System to the

Uniform Width as α-Chitin from Crab Shells,

Pretreatment of Cellulose, Biopolymers 2011,

Biomacromolecules 2009, 10, 1584–1588.

95, 833–839.

(4)

Mushi, N. E.; Butchosa, N.; Salajkova,

(8)

Dutta, A. K.; Izawa, H.; Morimoto, M.;

M.; Zhou, Q.; Berglund, L. A., Nanostructured

Saimoto, H.; Ifuku, S., Simple Preparation of

Membranes

Based

Nanofibers

Prepared

Chitin Nanofibers from Dry Squid Pen β-

on

by

Native

Mild

Chitin

Process,

Carbohydr. Polym. 2014, 112, 255–263.

(5)

Li, M. C.; Wu, Q.; Song, K.; Cheng, H.

chitin Powder by the Star Burst System, J.

Chitin Chitosan Sci. 2013, 1, 186–191.

(9)

Oishi, Y.; Nakaya, M.; Matsui, E.;

N.; Suzuki, S.; Lei, T., Chitin Nanofibers as

Hotta,

Reinforcing and Antimicrobial Agents in

Properties of Cellulose Composites Made of

Carboxymethyl Cellulose Films: Influence of

Isolated Cellulose Nanofibers and Poly(vinyl

A.,

Structural

and

Mechanical

24

alcohol), Composites, Part A 2015, 73, 72–79.

(10) Suenaga,

S.;

Osada,

M.,

Self-

Sustaining Cellulose Nanofiber Hydrogel

Produced by Hydrothermal Gelation Without

Additives, ACS Biomater. Sci. Eng. 2018, 4,

Hutchinson, B. H., Solution Studies of

Cellulose in Lithium Chloride and N,Ndimethylacetamide, Macromolecules 1985, 18,

2394–2401.

(15) Saito, T.; Yanagisawa, M.; Isogai, A.,

TEMPO-Mediated

1536–1545.

(11) Suenaga, S.; Osada, M., Parameters of

Hydrothermal Gelation of Chitin Nanofibers

Determined Using a Severity Factor, Cellulose

Oxidation

of

Native

Cellulose: SEC–MALLS Analysis of Watersoluble and -Insoluble Fractions in the

Oxidized Products, Cellulose 2005, 12, 305–

315.

2018, 25, 6873–6885.

(12) Wagner, W.; Pruß, A., The IAPWS

Formulation 1995 for the Thermodynamic

Properties of Ordinary Water Substance for

General and Scientific Use, J. Phys. Chem. Ref.

(16) Ono, Y.; Ishida, T.; Soeta, H.; Saito,

T.; Isogai, A., Reliable dn/dc Values of

Cellulose, Chitin, and Cellulose Triacetate

Dissolved in LiCl/N,N-Dimethylacetamide for

Molecular Mass Analysis, Biomacromolecules

Data 2002, 31, 387–535.

2016, 17, 192–199.

(13) Segal, L.; Creely, J. J.; Martin, A. E.;

Conrad, C. M., An Empirical Method for

Estimating the Degree of Crystallinity of

Native

Cellulose

Using

the

X-Ray

Diffractometer, Text. Res. J. 1959, 29, 786–

794.

(14) McCormick, C. L.; Callais, P. A.;

(17) Nata, I. F.; Wang, S. S. S.; Wu, T. M.;

Lee, C. K., β-Chitin Nanofibrils for Selfsustaining

Hydrogels

Preparation

via

Hydrothermal Treatment, Carbohydr. Polym.

2012, 90, 1509–1514.

(18) Lewis,

L.;

Derakhshandeh,

M.;

25

Hatzikiriakos,

S.

G.;

Hamad,

W.

Y.;

MacLachlan, M. J., Hydrothermal Gelation of

Aqueous Cellulose Nanocrystal Suspensions,

Biomacromolecules 2016, 17, 2747–2754.

and Cellulose, ACS Sustainable Chem. Eng.

2016, 4, 471–480.

(23) Antal, M. J.; Mok, W. S. L.; Richards,

G. N., Mechanism of Formation of 5-

(19) Langan, P.; Nishiyama, Y.; Chanzy, H.,

(Hydroxymethyl)-2-furaldehyde

from

d-

A Revised Structure and Hydrogen-Bonding

Fructose and Sucrose, Carbohydr. Res. 1990,

System in Cellulose II from a Neutron Fiber

199, 91–109.

Diffraction Analysis, J. Am. Chem. Soc. 1999,

121, 9940–9946.

(24) Bobleter,

O.,

Hydrothermal

Degradation of Polymers Derived from Plants,

(20) Langan, P.; Nishiyama, Y.; Chanzy, H.,

X-ray Structure of Mercerized Cellulose II at

1 Å Resolution Biomacromolecules 2001, 2,

410–416.

Prog. Polym. Sci. 1994, 19, 797–841.

(25) Kabyemela, B. M.; Adschiri, T.;

Malaluan, R. M.; Arai, K., Glucose and

Fructose Decomposition in Subcritical and

(21) Chang, C.; Zhang, L.; Zhou, J.; Zhang,

Supercritical

Water: Detailed

Reaction

L.; Kennedy, J. F., Structure and Properties of

Pathway, Mechanisms, and Kinetics, Ind. Eng.

Hydrogels

Chem. Res. 1999, 38, 2888–2895.

Prepared

from

Cellulose

in

NaOH/Urea Aqueous Solutions, Carbohydr.

Polym. 2010, 82, 122–127.

(26) Aida, T. M.; Yamagata, T.; Abe, C.;

Kawanami, H.; Watanabe, M.; Smith, R. L.,

(22) Shen, X.; Shamshina, J. L.; Berton, P.;

Production of Organic Acids from Alginate in

Bandomir, J.; Wang, H.; Gurau, G.; Rogers, R.

High Temperature Water, J. Supercrit. Fluids

D., Comparison of Hydrogels Prepared with

2012, 65, 39–44.

Ionic-Liquid-Isolated vs Commercial Chitin

(27) Hiraoki, R.; Ono, Y.; Saito, T.; Isogai,

26

A., Molecular Mass and Molecular-Mass

Electrical

Conductivity

of

Carbonized

Distribution of TEMPO-Oxidized Celluloses

Cellulose Fiber Networks, Nihon Reoroji

and TEMPO-Oxidized Cellulose Nanofibrils,

Gakkaishi 2013, 41, 331–336.

Biomacromolecules 2015, 16, 675–681.

(28) Sugiyama, J.; Vuong, R.; Chanzy, H.,

Electron Diffraction Study on the Two

Crystalline Phases Occurring in Native

Cellulose

from

an

Algal

Cell

Wall,

Macromolecules 1991, 24, 4168–4175.

(29) Kondo, T.; Kose, R.; Naito, H.; Kasai,

W., Aqueous Counter Collision Using Paired

Water Jets as a Novel Means of Preparing Bionanofibers, Carbohydr. Polym. 2014, 112,

284–290.

(30) Suenaga, S.; Osada, M., Systematic

Dynamic Viscoelasticity Measurements for

Chitin Nanofibers Prepared with Various

Concentrations,

Disintegration

Times,

Acidities, and Crystalline Structures, Int. J.

Biol. Macromol. 2018, 115, 431–437.

(31) Yu, L.; Tatsumi, D.; Morita, M.,

Relationship between Viscoelasticity and

27

Table of Contents

28

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る