リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Modeling SARS-CoV-2 infection and its individual differences with ACE2-expressing human iPS cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Modeling SARS-CoV-2 infection and its individual differences with ACE2-expressing human iPS cells

Sano, Emi Deguchi, Sayaka Sakamoto, Ayaka Mimura, Natsumi Hirabayashi, Ai Muramoto, Yukiko Noda, Takeshi Yamamoto, Takuya Takayama, Kazuo 京都大学 DOI:10.1016/j.isci.2021.102428

2021.05

概要

Genetic differences are a primary reason for differences in the susceptibility and severity of COVID-19. As induced pluripotent stem (iPS) cells maintain the genetic information of the donor, they can be used to model individual differences in SARS-CoV-2 infection in vitro. We found that human iPS cells expressing the SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) (ACE2-iPS cells) can be infected w SARS-CoV-2. In infected ACE2-iPS cells, the expression of SARS-CoV-2 nucleocapsid protein, budding of viral particles, and production of progeny virus, double membrane spherules, and double-membrane vesicles were confirmed. We performed SARS-CoV-2 infection experiments on ACE2-iPS/ embryonic stem (ES) cells from eight individuals. Male iPS/ES cells were more capable of producing the virus compared with female iPS/ES cells. These findings suggest that ACE2-iPS cells can not only reproduce individual differences in SARS-CoV-2 infection in vitro but also are a useful resource to clarify the causes of individual differences in COVID-19 due to genetic differences.

この論文で使われている画像

関連論文

参考文献

Anastassopoulou, C., Gkizarioti, Z., Patrinos, G.P., and Tsakris, A. (2020). Human genetic factors associated with susceptibility to SARS-CoV-2 infection and COVID-19 disease severity. Hum. Genomics 14, 1–8.

Group, S.C.-G. (2020). Genomewide association study of severe Covid-19 with respiratory failure. New Engl. J. Med. 383, 1522–1534.

Han, Y., Duan, X., Yang, L., Nilsson-Payant, B.E., Wang, P., Duan, F., Tang, X., Yaron, T.M., Zhang, T., and Uhl, S. (2021). Identification of SARS-CoV- 2 inhibitors using lung and colonic organoids. Nature 589, 270–275.

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kru¨ ger, N., Herrler, T., Erichsen, S., Schiergens, T.S., Herrler, G., Wu, N.-H., and Nitsche, A. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280. e278.

Kajiwara, M., Aoi, T., Okita, K., Takahashi, R., Inoue, H., Takayama, N., Endo, H., Eto, K., Toguchida, J., and Uemoto, S. (2012). Donor- dependent variations in hepatic differentiation from human-induced pluripotent stem cells. Proc. Natl. Acad. Sci. U S A 109, 12538–12543.

Kim, S.-I., Matsumoto, T., Kagawa, H., Nakamura, M., Hirohata, R., Ueno, A., Ohishi, M., Sakuma, T., Soga, T., and Yamamoto, T. (2018). Microhomology-assisted scarless genome editing in human iPSCs. Nat. Commun. 9, 1–14.

Klein, S., Cortese, M., Winter, S.L., Wachsmuth- Melm, M., Neufeldt, C.J., Cerikan, B., Stanifer,

M.L., Boulant, S., Bartenschlager, R., and Chlanda, P. (2020). SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. Nat. Commun. 11, 1–10.

Li, L., Li, Y., Sottas, C., Culty, M., Fan, J., Hu, Y., Cheung, G., Chemes, H.E., and Papadopoulos, V. (2019). Directing differentiation of human induced pluripotent stem cells toward androgen- producing Leydig cells rather than adrenal cells. Proc. Natl. Acad. Sci. U S A 116, 23274–23283.

Maier, H.J., Hawes, P.C., Cottam, E.M., Mantell, J., Verkade, P., Monaghan, P., Wileman, T., and Britton, P. (2013). Infectious bronchitis virus generates spherules from zippered endoplasmic reticulum membranes. mBio 4, e00801–13.

Pairo-Castineira, E., Clohisey, S., Klaric, L., Bretherick, A.D., Rawlik, K., Pasko, D., Walker, S., Parkinson, N., Fourman, M.H., and Russell, C.D. (2021). Genetic mechanisms of critical illness in Covid-19. Nature 591, 92–98.

Park, I.-H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., Lensch, M.W., Cowan, C., Hochedlinger, K., and Daley, G.Q. (2008). Disease-specific induced pluripotent stem cells. Cell 134, 877–886.

Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872.

Takayama, K. (2020). In vitro and animal models for SARS-CoV-2 research. Trends Pharmacol. Sci. 41, 513–517.

Wambier, C.G., Goren, A., Van˜ o-Galva´ n, S., Ramos, P.M., Ossimetha, A., Nau, G., Herrera, S., and McCoy, J. (2020). Androgen sensitivity gateway to COVID-19 disease severity. Drug Dev. Res. 81, 771–776.

Wang, K., Chen, W., Zhang, Z., Deng, Y., Lian, J.-Q., Du, P., Wei, D., Zhang, Y., Sun, X.-X., and Gong, L. (2020). CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct. Target. Ther. 5, 1–10.

Weiss, P., and Murdoch, D.R. (2020). Clinical course and mortality risk of severe COVID-19. Lancet 395, 1014–1015.

Westmeier, J., Paniskaki, K., Karako¨ se, Z., Werner, T., Sutter, K., Dolff, S., Overbeck, M., Limmer, A., Liu, J., and Zheng, X. (2020). Impaired cytotoxic CD8+ T cell response in elderly COVID-19 patients. mBio 11, e02243–20.

Zeberg, H., and Pa¨ a¨ bo, S. (2020). The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nature 587, 610–612.

Ziegler, C.G., Allon, S.J., Nyquist, S.K., Mbano, I.M., Miao, V.N., Tzouanas, C.N., Cao, Y., Yousif, A.S., Bals, J., and Hauser, B.M. (2020). SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 181, 1016–1035. e1019.

Supplemental references

Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeq—a Python framework to work with high- throughput sequencing data. Bioinformatics 31, 166-169.

Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21. Frankish, A., Diekhans, M., Ferreira, A.-M., Johnson, R., Jungreis, I., Loveland, J., Mudge, J.M., Sisu, C., Wright, J., and Armstrong, J. (2019). GENCODE reference annotation for the human and mouse genomes. Nucleic acids research 47, D766-D773.

Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology 15, 1-21.

Maizel Jr, J.V., White, D.O., and Scharff, M.D. (1968). The polypeptides of adenovirus: I. Evidence for multiple protein components in the virion and a comparison of types 2, 7A, and 12. Virology 36, 115-125.

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet journal 17, 10-12.

Matsuyama, S., Nao, N., Shirato, K., Kawase, M., Saito, S., Takayama, I., Nagata, N., Sekizuka, T., Katoh, H., and Kato, F. (2020). Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proceedings of the National Academy of Sciences 117, 7001-7003.

Nakagawa, M., Taniguchi, Y., Senda, S., Takizawa, N., Ichisaka, T., Asano, K., Morizane, A., Doi, D., Takahashi, J., and Nishizawa, M. (2014). A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Scientific reports 4, 1-7.

Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. cell 131, 861-872.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る