リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Dual inhibition of TMPRSS2 and Cathepsin B prevents SARS-CoV-2 infection in iPS cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Dual inhibition of TMPRSS2 and Cathepsin B prevents SARS-CoV-2 infection in iPS cells

Hashimoto, Rina Sakamoto, Ayaka Deguchi, Sayaka Yi, Renxing Sano, Emi Hotta, Akitsu Takahashi, Kazutoshi Yamanaka, Shinya Takayama, Kazuo 京都大学 DOI:10.1016/j.omtn.2021.10.016

2021.12

概要

It has been reported that many receptors and proteases are required for SARS-CoV-2 infection. Although angiotensin-converting enzyme2 (ACE2) is the most important of these receptors, little is known about the contribution of other genes. In this study, we examined the roles of neuropilin-1, basigin, transmembrane serine proteases (TMPRSSs), and cathepsins (CTSs) in SARS-CoV-2 infection using the CRISPR interference system and ACE2-expressing human iPS cells. Double-knockdown of TMPRSS2 and CTSB reduced the viral load to 0.036±0.021%. Consistently, the combination of the CTPB inhibitor CA-074 methyl ester and the TMPRSS2 inhibitor Camostat reduced the viral load to 0.0078±0.0057%. This result was confirmed using four SARS-CoV-2 variants (B.1.3, B.1.1.7, B.1.351, and B.1.1.248). The simultaneous use of these two drugs reduced viral load to less than 0.01% in both female and male iPS cells. These findings suggest that compounds targeting TMPRSS2 and CTSB exhibit highly efficient antiviral effects independent of gender and SARS-CoV-2 variant.

この論文で使われている画像

参考文献

1. Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T.S., Herrler, G., Wu, N.-H., and Nitsche, A. (2020). SARS-CoV-2 cell en- try depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280.e8.

2. Seyran, M., Takayama, K., Uversky, V.N., Lundstrom, K., Palu`, G., Sherchan, S.P., Attrish, D., Rezaei, N., Aljabali, A.A.A., Ghosh, S., et al. (2021). The structural basis of accelerated host cell entry by SARS-CoV-2y. FEBS J. 288, 5010–5020.

3. Daly, J.L., Simonetti, B., Klein, K., Chen, K.-E., Williamson, M.K., Antón-Plágaro, C., Shoemark, D.K., Simón-Gracia, L., Bauer, M., and Hollandi, R. (2020). Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science 370, 861–865.

4. Cantuti-Castelvetri, L., Ojha, R., Pedro, L.D., Djannatian, M., Franz, J., Kuivanen, S., van der Meer, F., Kallio, K., Kaya, T., and Anastasina, M. (2020). Neuropilin-1 facil- itates SARS-CoV-2 cell entry and infectivity. Science 370, 856–860.

5. Wang, K., Chen, W., Zhang, Z., Deng, Y., Lian, J.-Q., Du, P., Wei, D., Zhang, Y., Sun, X.-X., and Gong, L. (2020). CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct. Target. Ther. 5, 1–10.

6. Hoffmann, M., Hofmann-Winkler, H., Smith, J.C., Krüger, N., Arora, P., Sørensen, L.K., Søgaard, O.S., Hasselstrøm, J.B., Winkler, M., and Hempel, T. (2021). Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity. EBioMedicine 65, 103255.

7. Zang, R., Castro, M.F.G., McCune, B.T., Zeng, Q., Rothlauf, P.W., Sonnek, N.M., Liu, Z., Brulois, K.F., Wang, X., and Greenberg, H.B. (2020). TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci. Immunol. 5. https://doi.org/10.1126/sciimmunol.abc3582.

8. Zhao, M.-M., Yang, W.-L., Yang, F.-Y., Zhang, L., Huang, W.-J., Hou, W., Fan, C.-F., Jin, R.-H., Feng, Y.-M., and Wang, Y.-C. (2021). Cathepsin L plays a key role in SARS- CoV-2 infection in humans and humanized mice and is a promising target for new drug development. Signal Transduct. Target. Ther. 6, 1–12.

9. Gilbert, L.A., Larson, M.H., Morsut, L., Liu, Z., Brar, G.A., Torres, S.E., Stern- Ginossar, N., Brandman, O., Whitehead, E.H., and Doudna, J.A. (2013). CRISPR- mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451.

10. Mandegar, M.A., Huebsch, N., Frolov, E.B., Shin, E., Truong, A., Olvera, M.P., Chan, A.H., Miyaoka, Y., Holmes, K., and Spencer, C.I. (2016). CRISPR interference effi-ciently induces specific and reversible gene silencing in human iPSCs. Cell Stem Cell 18, 541–553.

11. Sano, E., Deguchi, S., Sakamoto, A., Mimura, N., Hirabayashi, A., Muramoto, Y., Noda, T., Yamamoto, T., and Takayama, K. (2021). Modeling SARS-CoV-2 infection and its individual differences with ACE2-expressing human iPS cells. iScience 24, 102428.

12. Tian, R., Gachechiladze, M.A., Ludwig, C.H., Laurie, M.T., Hong, J.Y., Nathaniel, D., Prabhu, A.V., Fernandopulle, M.S., Patel, R., and Abshari, M. (2019). CRISPR inter- ference-based platform for multimodal genetic screens in human iPSC-derived neu- rons. Neuron 104, 239–255.e12.

13. Takayama, K. (2020). In vitro and animal models for SARS-CoV-2 research. Trends Pharmacol. Sci. 41, 513–517.

14. Deguchi, S., Serrano-Aroca, Á., Tambuwala, M.M., Uhal, B.D., Brufsky, A.M., and Takayama, K. (2021). SARS-CoV-2 research using human pluripotent stem cells and organoids. Stem Cells Transl. Med. https://doi.org/10.1002/sctm.21-0183.

15. Ou, T., Mou, H., Zhang, L., Ojha, A., Choe, H., and Farzan, M. (2021). Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is attenuated by TMPRSS2. PLoS Pathog. 17, e1009212.

16. Group, S.C.-G. (2020). Genomewide association study of severe Covid-19 with respi- ratory failure. N. Engl. J. Med. 383, 1522–1534.

17. Pairo-Castineira, E., Clohisey, S., Klaric, L., Bretherick, A.D., Rawlik, K., Pasko, D., Walker, S., Parkinson, N., Fourman, M.H., and Russell, C.D. (2021). Genetic mech- anisms of critical illness in Covid-19. Nature 591, 92–98.

18. Nakagawa, M., Taniguchi, Y., Senda, S., Takizawa, N., Ichisaka, T., Asano, K., Morizane, A., Doi, D., Takahashi, J., and Nishizawa, M. (2014). A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci. Rep. 4, 1–7.

19. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibro- blasts by defined factors. Cell 131, 861–872.

20. Matsuyama, S., Nao, N., Shirato, K., Kawase, M., Saito, S., Takayama, I., Nagata, N., Sekizuka, T., Katoh, H., and Kato, F. (2020). Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc. Natl. Acad. Sci. U S A 117, 7001–7003.

21. Maizel, J.V., Jr., White, D.O., and Scharff, M.D. (1968). The polypeptides of adeno- virus: I. Evidence for multiple protein components in the virion and a comparison of types 2, 7A, and 12. Virology 36, 115–125.

22. Ishida, K., Xu, H., Sasakawa, N., Lung, M.S.Y., Kudryashev, J.A., Gee, P., and Hotta, A. (2018). Site-specific randomization of the endogenous genome by a regulatable CRISPR-Cas9 piggyBac system in human cells. Sci. Rep. 8, 1–12.

23. Horlbeck, M.A., Gilbert, L.A., Villalta, J.E., Adamson, B., Pak, R.A., Chen, Y., Fields, A.P., Park, C.Y., Corn, J.E., and Kampmann, M. (2016). Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. elife 5, e19760.

24. Takahashi, K., Jeong, D., Wang, S., Narita, M., Jin, X., Iwasaki, M., Perli, S.D., Conklin, B.R., and Yamanaka, S. (2020). Critical roles of translation initiation and RNA uridylation in endogenous retroviral expression and neural differentiation in pluripotent stem cells. Cell. Rep. 31, 107715.

参考文献をもっと見る