リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Case report: Late middle-aged features of FAM111A variant, Kenny–Caffey syndrome type 2-suggestive symptoms during a long follow-up」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Case report: Late middle-aged features of FAM111A variant, Kenny–Caffey syndrome type 2-suggestive symptoms during a long follow-up

Ohmachi, Yuka Urai, Shin Bando, Hironori Yokoi, Jun Yamamoto, Masaaki Kanie, Keitaro Motomura, Yuma Tsujimoto, Yasutaka Sasaki, Yuriko Oi, Yuka Yamamoto, Naoki Suzuki, Masaki Shichi, Hiroki Iguchi, Genzo Uehara, Natsumi Fukuoka, Hidenori Ogawa, Wataru 神戸大学

2023.01.04

概要

Kenny–Caffey syndrome type 2 (KCS2) is an extremely rare skeletal disorder involving hypoparathyroidism and short stature. It has an autosomal dominant pattern of inheritance and is caused by variants in the FAM111 trypsin-like peptidase A (FAM111A) gene. This disease is often difficult to diagnose due to a wide range of more common diseases manifesting hypoparathyroidism and short stature. Herein, we present the case of a 56-year-old female patient with idiopathic hypoparathyroidism and a short stature. The patient was treated for these conditions during childhood. Upon re-evaluating the etiology of KCS2, we suspected that the patient had the disorder because of clinical manifestations, such as cortical thickening and medullary stenosis of the bones, and lack of intellectual abnormalities. Genetic testing identified a heterozygous missense variant in the FAM111A gene (p.R569H). Interestingly, the patient also had bilateral sensorineural hearing loss and vestibular dysfunction, which have been rarely described in previous reports of pediatric cases. In KCS2, inner ear dysfunction due to Eustachian tube dysfunction may progress in middle age or later. However, this disease is now being reported in younger patients. Nevertheless, our case may be instructive of how such cases emerge chronically after middle age. Herein, we also provide a literature review of KCS2.

この論文で使われている画像

参考文献

1. Fong J, Khan A. Hypocalcemia: updates in diagnosis and management for primary care. Can Fam Physician (2012) 58:158–62.

2. Bilezikian JP. Hypoparathyroidism. J Clin Endocrinol Metab (2020) 105:1722–36. doi: 10.1210/clinem/dgaa113

3. Gordon RJ, Levine MA. Genetic disorders of parathyroid development and function. Endocrinol Metab Clin North Am (2018) 47:809–23. doi: 10.1016/ j.ecl.2018.07.007

4. Grunauer M, Jorge AAL. Genetic short stature. Growth Horm IGF Res (2018) 38:29–33. doi: 10.1016/j.ghir.2017.12.003

5. Baldridge D, Spillmann RC, Wegner DJ, Wambach JA, White FV, Sisco K, et al. Phenotypic expansion of KMT2D-related disorder: beyond kabuki syndrome. Am J Med Genet A (2020) 182:1053–65. doi: 10.1002/ajmg.a.61518

6. Tenhola S, Voutilainen R, Reyes M, Toiviainen-Salo S, Jüppner H, Mäkitie O. Impaired growth and intracranial calcifications in autosomal dominant hypocalcemia caused by a GNA11 mutation. Eur J Endocrinol (2016) 175:211–8. doi: 10.1530/EJE-16-0109

7. Kenny FM, Linarelli L. Dwarfism and cortical thickening of tubular bones: transient hypocalcemia in a mother and son. Am J Dis Child (1966) 111:201–7. doi: 10.1001/archpedi.1966.02090050133013

8. Caffey J. Congenital stenosis of medullary spaces in tubular bones and calvaria in two proportionate dwarfs–mother and son; coupled with transitory hypocalcemic tetany. Am J Roentgenol Radium Ther Nucl Med (1967) 100:1–11. doi: 10.2214/ajr.100.1.1

9. Moussaid Y, Griffiths D, Richard B, Dieux A, Lemerrer M, Léger J, et al. Oral manifestations of patients with Kenny-caffey syndrome. Eur J Med Genet (2012) 55:441–5. doi:

10.1016/j.ejmg.2012.03.005 10. Isojima T, Doi K, Mitsui J, Oda Y, Tokuhiro E, Yasoda A, et al. A recurrent de novo FAM111A mutation causes Kenny-caffey syndrome type 2. J Bone Miner Res (2014) 29:992–8. doi:10.1002/jbmr.2091

11. Unger S, Górna MW, Le Béchec A, Vale-Pereira SD, Bedeschi MF, Geiberger S, et al. FAM111A mutations result in hypoparathyroidism and impaired skeletal development. Am J Hum Genet (2013) 92:990–5. doi: 10.1016/ j.ajhg.2013.04.020

12. Burnside RD. 22q11.21 deletion syndromes: a review of proximal, central, and distal deletions and their associated features. Cytogenet Genome Res (2015) 146:89–99. doi: 10.1159/000438708

13. Allanson JE, Cunniff C, Hoyme HE, McGaughran J, Muenke M, Neri G. Elements of morphology: standard terminology for the head and face. Am J Med Genet A (2009) 149A:6–28. doi: 10.1002/ajmg.a.32612

14. Van Esch H, Groenen P, Nesbit MA, Schuffenhauer S, Lichtner P, Vanderlinden G, et al. GATA3 haplo-insufficiency causes human HDR syndrome. Nature (2000) 406:419–22. doi: 10.1038/35019088

15. Isaacson JE, Vora NM. Differential diagnosis and treatment of hearing loss. Am Fam Physician (2003) 68:1125–32.

16. Lang E, Koller S, Atac D, Pfäffli OA, Hanson JV, Feil S, et al. Genotypephenotype spectrum in isolated and syndromic nanophthalmos. Acta Ophthalmol (2021) 99:e594–607. doi: 10.1111/aos.14615

17. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genet Med (2015) 17:405–24. doi: 10.1038/gim.2015.30

18. Guo MH, Shen Y, Walvoord EC, Miller TC, Moon JE, Hirschhorn JN, et al. Whole exome sequencing to identify genetic causes of short stature. Horm Res Paediatr (2014) 82:44–52. doi: 10.1159/000360857

19. Nikkel SM, Ahmed A, Smith A, Marcadier J, Bulman DE, Boycott KM. Mother-to-daughter transmission of Kenny-caffey syndrome associated with the recurrent, dominant FAM111A mutation p.Arg569His. Clin Genet (2014) 86:394– 5. doi: 10.1111/cge.12290

20. Kim JH, Shin Y-L, Yang S, Cheon CK, Cho JH, Lee BH, et al. Diverse genetic aetiologies and clinical outcomes of paediatric hypoparathyroidism. Clin Endocrinol (2015) 83:790–6. doi: 10.1111/cen.12944

21. Abraham MB, Li D, Tang D, O'Connell SM, McKenzie F, Lim EM, et al. Short stature and hypoparathyroidism in a child with Kenny-caffey syndrome type 2 due to a novel mutation in FAM111A gene. Int J Pediatr Endocrinol (2017) 2017:1. doi: 10.1186/s13633-016-0041-7

22. Wang Y, Nie M, Wang O, Li Y, Jiang Y, Li M, et al. Genetic screening in a large Chinese cohort of childhood onset hypoparathyroidism by next-generation sequencing combined with TBX1-MLPA. J Bone Miner Res (2019) 34:2254–63. doi: 10.1002/jbmr.3854

23. Cheng SSW, Chan PKJ, Luk HM, Mok MTS, Lo IFM. Adult Chinese twins with Kenny-caffey syndrome type 2: a potential age-dependent phenotype and review of literature. Am J Med Genet A (2021) 185:636–46. doi: 10.1002/ ajmg.a.61991

24. Cavole TR, Perrone E, Soares MDD, Da Silva MRD, Maeda SS, LazarettiCastro M, et al. Overlapping phenotype comprising Kenny-caffey type 2 and sanjad-sakati syndromes: The first case report. Am J Med Genet A (2020) 182:3029– 34. doi: 10.1002/ajmg.a.61896

25. Turner AE, Abu-Ghname A, Davis MJ, Shih L, Volk AS, Streff H, et al. Kenny-Caffey syndrome type 2: a unique presentation and craniofacial analysis. J Craniofac Surg (2020) 31:e471–5. doi: 10.1097/SCS.0000000000006439

26. Deconte D, Kreusch TC, Salvaro BP, Perin WF, Ferreira MAT, Kopacek C, et al. Ophthalmologic impairment and intellectual disability in a girl presenting Kenny-caffey syndrome type 2. J Pediatr Genet (2020) 9:263–9. doi: 10.1055/s0039-3401831

27. Kaleta D, Zapolnik P, Mazur A, Pyrkosz A. A rare cause of short stature: Kenny-caffey syndrome type 2- a case report and literature review. Pediatr Polska (2020) 95:249–54. doi: 10.5114/polp.2020.103491

28. Müller R, Steffensen T, Krstic N, Cain MA. Report of a novel variant in the FAM111A gene in a fetus with multiple anomalies including gracile bones, hypoplastic spleen, and hypomineralized skull. Am J Med Genet A. (2021) 185:1903–7. doi: 10.1002/ajmg.a.62182

29. Yerawar C, Kabde A, Deokar P. Kenny-Caffey syndrome type 2. QJM (2021) 114:267–69. doi: 10.1093/qjmed/hcaa175

30. Eren E, Unlu HT, Ceylaner S, Tarim O. Compound heterozygous variants in FAM111A cause autosomal recessive Kenny-caffey syndrome type 2. J Clin Res Pediatr Endocrinol (2021). doi: 10.4274/jcrpe.galenos.2021.2020.0315

31. Dalbeth N, Gosling AL, Gaffo A, Abhishek A. Gout. Lancet (2021) 397:1843–55. doi: 10.1016/S0140-6736(21)00569-9

32. Dehlin M, Jacobsson L, Roddy E. Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors. Nat Rev Rheumatol (2020) 16:380– 90. doi: 10.1038/s41584-020-0441-1

33. Nian Y-L, You C-G. Susceptibility genes of hyperuricemia and gout. Hereditas (2022) 159:30. doi: 10.1186/s41065-022-00243-y

34. de Brouwer AP, van Bokhoven H, Nabuurs SB, Arts WF, Christodoulou J, Duley J. PRPS1 mutations: Four distinct syndromes and potential treatment. Am J Hum Genet (2010) 86:506–18. doi: 10.1016/j.ajhg.2010.02.024

35. Moran R, Kuilenburg AB, Duley J, Nabuurs SB, Retno-Fitri A, Christodoulou J, et al. Phosphoribosylpyrophosphate synthetase superactivity and recurrent infections is caused by a p.Val142Leu mutation in PRS-I. Am J Med Genet A. (2012) 158:455–60. doi: 10.1002/ajmg.a.34428

36. Fine DA, Rozenblatt-Rosen O, Padi M, Korkhin A, James RL, Adelmant G, et al. Identification of FAM111A as an SV40 host range restriction and adenovirus helper factor. PloS Pathog (2012) 8:e1002949. doi: 10.1371/ journal.ppat.1002949

37. Nie M, Oravcová M, Jami-Alahmadi Y, Wohlschlegel JA, LazzeriniDenchi E, Boddy MN. FAM111A induces nuclear dysfunction in disease and viral restriction. EMBO Rep (2021) 22:e50803. doi: 10.15252/embr. 202050803

38. Isojima T, Kato N, Ito Y, Kanzaki S, Murata M. Growth standard charts for Japanese children with mean and standard deviation (SD) values based on the year 2000 national survey. Clin Pediatr Endocrinol (2016) 25:71–6. doi: 10.1297/ cpe.25.71

参考文献をもっと見る