リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Human herpesvirus 6A nuclear matrix protein U37 interacts with heat shock transcription factor 1 and activates the heat shock response」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Human herpesvirus 6A nuclear matrix protein U37 interacts with heat shock transcription factor 1 and activates the heat shock response

Huang, Jing Rin Arii, Jun Hirai, Mansaku Nishimura, Mitsuhiro Mori, Yasuko 神戸大学

2023.09.28

概要

Nascent nucleocapsids of herpesviruses acquire a primary envelope during their nuclear export by budding through the inner nuclear membrane into the perinuclear space between the inner and outer nuclear membranes. This process is mediated by a conserved viral heterodimeric complex designated the nuclear egress complex, which consists of the nuclear matrix protein and the nuclear membrane protein. In addition to its essential roles during nuclear egress, the nuclear matrix protein has been shown to interact with intracellular signaling pathway molecules including NF-κB and IFN-β to affect viral or cellular gene expression. The human herpesvirus 6A (HHV-6A) U37 gene encodes a nuclear matrix protein, the role of which has not been analyzed. Here, we show that HHV-6A U37 activates the heat shock element promoter and induces the accumulation of the molecular chaperone Hsp90. Mechanistically, HHV-6A U37 interacts with heat shock transcription factor 1 (HSF1) and induces its phosphorylation at Ser-326. We report that pharmacological inhibition of HSF1, Hsp70, or Hsp90 decreases viral protein accumulation and viral replication. Taken together, our results lead us to propose a model in which HHV-6A U37 activates the heat shock response to support viral gene expression and replication.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

Johnson DC, Baines JD. 2011. Herpesviruses remodel host membranes

for virus egress. Nat Rev Microbiol 9:382–394. https://doi.org/10.1038/

nrmicro2559

Arii J. 2021. Host and viral factors involved in nuclear egress of herpes

simplex virus 1. Viruses 13:754. https://doi.org/10.3390/v13050754

Häge S, Marschall M. 2022. ’'Come together'-the regulatory interaction

of herpesviral nuclear egress proteins comprises both essential and

accessory

functions.

Cells

11:1837.

https://doi.org/10.3390/cells11111837

Reynolds AE, Ryckman BJ, Baines JD, Zhou Y, Liang L, Roller RJ. 2001.

U(L)31 and U(L)34 proteins of herpes simplex virus type 1 form a

complex that accumulates at the nuclear rim and is required for

envelopment of nucleocapsids. J Virol 75:8803–8817. https://doi.org/10.

1128/jvi.75.18.8803-8817.2001

Kuan MI, O’Dowd JM, Chughtai K, Hayman I, Brown CJ, Fortunato EA.

2016. Human cytomegalovirus nuclear egress and secondary envelop­

ment are negatively affected in the absence of cellular p53. Virology

497:279–293. https://doi.org/10.1016/j.virol.2016.07.021

September 2023 Volume 97

Issue 9

6.

7.

8.

9.

Bigalke JM, Heldwein EE. 2015. Structural basis of membrane budding

by the nuclear egress complex of herpesviruses. EMBO J 34:2921–2936.

https://doi.org/10.15252/embj.201592359

Lye MF, Sharma M, El Omari K, Filman DJ, Schuermann JP, Hogle JM,

Coen DM. 2015. Unexpected features and mechanism of heterodimer

formation of a herpesvirus nuclear egress complex. EMBO J 34:2937–

2952. https://doi.org/10.15252/embj.201592651

Leigh KE, Sharma M, Mansueto MS, Boeszoermenyi A, Filman DJ, Hogle

JM, Wagner G, Coen DM, Arthanari H. 2015. Structure of a herpesvirus

nuclear egress complex subunit reveals an interaction groove that is

essential for viral replication. Proc Natl Acad Sci U S A 112:9010–9015.

https://doi.org/10.1073/pnas.1511140112

Zeev-Ben-Mordehai T, Weberruß M, Lorenz M, Cheleski J, Hellberg T,

Whittle C, El Omari K, Vasishtan D, Dent KC, Harlos K, Franzke K, Hagen C,

Klupp BG, Antonin W, Mettenleiter TC, Grünewald K. 2015. Crystal

structure of the herpesvirus nuclear egress complex provides insights

into inner nuclear membrane remodeling. Cell Rep 13:2645–2652. https:

//doi.org/10.1016/j.celrep.2015.11.008

10.1128/jvi.00718-23 20

Downloaded from https://journals.asm.org/journal/jvi on 15 November 2023 by 133.30.169.29.

Funder

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Muller YA, Häge S, Alkhashrom S, Höllriegl T, Weigert S, Dolles S, Hof K,

Walzer SA, Egerer-Sieber C, Conrad M, Holst S, Lösing J, Sonntag E, Sticht

H, Eichler J, Marschall M. 2020. High-resolution crystal structures of two

prototypical beta- and gamma-herpesviral nuclear egress complexes

unravel the determinants of subfamily specificity. J Biol Chem 295:3189–

3201. https://doi.org/10.1074/jbc.RA119.011546

Schweininger J, Kriegel M, Häge S, Conrad M, Alkhashrom S, Lösing J,

Weiler S, Tillmanns J, Egerer-Sieber C, Decker A, Lenac Roviš T, Eichler J,

Sticht H, Marschall M, Muller YA. 2022. The crystal structure of the

varicella-zoster Orf24-Orf27 nuclear egress complex spotlights multiple

determinants of herpesvirus subfamily specificity. J Biol Chem

298:101625. https://doi.org/10.1016/j.jbc.2022.101625

Thorsen MK, Draganova EB, Heldwein EE. 2022. The nuclear egress

complex of epstein-barr virus buds membranes through an oligomeriza­

tion-driven mechanism. PLoS Pathog 18:e1010623. https://doi.org/10.

1371/journal.ppat.1010623

Walzer SA, Egerer-Sieber C, Sticht H, Sevvana M, Hohl K, Milbradt J,

Muller YA, Marschall M. 2015. Crystal structure of the human cytomega­

lovirus pUL50-pUL53 core nuclear egress complex provides insight into

a unique assembly scaffold for virus-host protein interactions. J Biol

Chem 290:27452–27458. https://doi.org/10.1074/jbc.C115.686527

Bigalke JM, Heuser T, Nicastro D, Heldwein EE. 2014. Membrane

deformation and scission by the HSV-1 nuclear egress complex. Nat

Commun 5:4131. https://doi.org/10.1038/ncomms5131

Hagen C, Dent KC, Zeev-Ben-Mordehai T, Grange M, Bosse JB, Whittle C,

Klupp BG, Siebert CA, Vasishtan D, Bäuerlein FJB, Cheleski J, Werner S,

Guttmann P, Rehbein S, Henzler K, Demmerle J, Adler B, Koszinowski U,

Schermelleh L, Schneider G, Enquist LW, Plitzko JM, Mettenleiter TC,

Grünewald K. 2015. Structural basis of vesicle formation at the inner

nuclear membrane. Cell 163:1692–1701. https://doi.org/10.1016/j.cell.

2015.11.029

Yang K, Baines JD. 2011. Selection of HSV capsids for envelopment

involves interaction between capsid surface components pUL31, pUL17,

and pUL25. Proc Natl Acad Sci U S A 108:14276–14281. https://doi.org/

10.1073/pnas.1108564108

Yang K, Wills E, Lim HY, Zhou ZH, Baines JD. 2014. Association of herpes

simplex virus pUL31 with capsid vertices and components of the capsid

vertex­specific complex. J Virol 88:3815–3825. https://doi.org/10.1128/

JVI.03175-13

Rönfeldt S, Klupp BG, Franzke K, Mettenleiter TC. 2017. Lysine 242 within

helix 10 of the pseudorabies virus nuclear egress complex pUL31

component is critical for primary envelopment of nucleocapsids. J Virol

91:e01182-17. https://doi.org/10.1128/JVI.01182-17

Takeshima K, Arii J, Maruzuru Y, Koyanagi N, Kato A, Kawaguchi Y. 2019.

Identification of the capsid binding site in the herpes simplex virus 1

nuclear egress complex and its role in viral primary envelopment and

replication. J Virol 93:e01290-19. https://doi.org/10.1128/JVI.01290-19

Lee C-P, Liu P-T, Kung H-N, Su M-T, Chua H-H, Chang Y-H, Chang C-W, Tsai

C-H, Liu F-T, Chen M-R, Sun R. 2012. The ESCRT machinery is recruited by

the viral BFRF1 protein to the nucleus-associated membrane for the

maturation of epstein-barr virus. PLoS Pathog 8:e1002904. https://doi.

org/10.1371/journal.ppat.1002904

Lee C-P, Liu G-T, Kung H-N, Liu P-T, Liao Y-T, Chow L-P, Chang L-S, Chang

Y-H, Chang C-W, Shu W-C, Angers A, Farina A, Lin S-F, Tsai C-H, Bouamr F,

Chen M-R, Longnecker RM. 2016. The ubiquitin ligase Itch and

ubiquitination regulate BFRF1-mediated nuclear envelope modification

for Epstein-Barr virus maturation. J Virol 90:8994–9007. https://doi.org/

10.1128/JVI.01235-16

Arii J, Watanabe M, Maeda F, Tokai-Nishizumi N, Chihara T, Miura M,

Maruzuru Y, Koyanagi N, Kato A, Kawaguchi Y. 2018. ESCRT-III mediates

budding across the inner nuclear membrane and regulates its integrity.

Nat Commun 9:3379. https://doi.org/10.1038/s41467-018-05889-9

Arii J, Takeshima K, Maruzuru Y, Koyanagi N, Nakayama Y, Kato A, Mori Y,

Kawaguchi Y, Frappier L. 2022. Role of the arginine cluster in the

disordered domain of herpes simplex virus 1 Ul34 for the recruitment of

ESCRT-III for viral primary envelopment. J Virol 96:e0170421. https://doi.

org/10.1128/JVI.01704-21

Roberts KL, Baines JD. 2011. UL31 of herpes simplex virus 1 is necessary

for optimal NF-kappaB activation and expression of viral gene products.

J Virol 85:4947–4953. https://doi.org/10.1128/JVI.00068-11

September 2023 Volume 97

Issue 9

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Sherry MR, Hay TJM, Gulak MA, Nassiri A, Finnen RL, Banfield BW. 2017.

The herpesvirus nuclear egress complex component, UL31, can be

recruited to sites of DNA damage through poly-ADP ribose binding. Sci

Rep 7:1882. https://doi.org/10.1038/s41598-017-02109-0

Gong L, Ou X, Hu L, Zhong J, Li J, Deng S, Li B, Pan L, Wang L, Hong X, Luo

W, Zeng Q, Zan J, Peng T, Cai M, Li M. 2022. The molecular mechanism of

herpes simplex virus 1 UL31 in antagonizing the activity of IFN-beta.

Microbiol Spectr 10:e0188321. https://doi.org/10.1128/spectrum.0188321

Aubin JT, Collandre H, Candotti D, Ingrand D, Rouzioux C, Burgard M,

Richard S, Huraux JM, Agut H. 1991. Several groups among human

herpesvirus-6 strains can be distinguished by Southern blotting and

polymerase chain-reaction. J Clin Microbiol 29:367–372. https://doi.org/

10.1128/jcm.29.2.367-372.1991

Campadelli-Fiume G, Guerrini S, Liu X, Foà-Tomasi L. 1993. Monoclonal

antibodies to glycoprotein B differentiate human herpesvirus 6 into two

clusters, variants A and B. J Gen Virol 74:2257–2262. https://doi.org/10.

1099/0022-1317-74-10-2257

Wyatt LS, Balachandran N, Frenkel N. 1990. Variations in the replication

and antigenic properties of human herpesvirus 6 strains. J Infect Dis

162:852–857. https://doi.org/10.1093/infdis/162.4.852

Ablashi D, Agut H, Alvarez-Lafuente R, Clark DA, Dewhurst S, DiLuca D,

Flamand L, Frenkel N, Gallo R, Gompels UA, Höllsberg P, Jacobson S,

Luppi M, Lusso P, Malnati M, Medveczky P, Mori Y, Pellett PE, Pritchett JC,

Yamanishi K, Yoshikawa T. 2014. Classification of HHV-6A and HHV-6B as

distinct viruses. Arch Virol 159:863–870. https://doi.org/10.1007/s00705013-1902-5

Yamanishi K, Mori Y, Pellet PE. 2013. Human Herpesviruses 6 and 7, p

2058–2079. In Knipe DM, PM Howley, JI Cohen, DE Griffin, RA Lamb, MA

Martin, VR Racaniello, B Roizman (ed), Fields Virology, 6th ed. LippincottWilliams &Wilkins, Philadelphia, PA.

Alvarez-Lafuente R, García-Montojo M, De las Heras V, Bartolomé M,

Arroyo R. 2006. Clinical parameters and HHV-6 active replication in

relapsing-remitting multiple sclerosis patients. J Clin Virol 37:S24–S26.

https://doi.org/10.1016/S1386-6532(06)70007-5

Caselli E, Zatelli MC, Rizzo R, Benedetti S, Martorelli D, Trasforini G, Cassai

E, degli Uberti EC, Di Luca D, Dolcetti R. 2012. Virologic and immunologic

evidence supporting an association between HHV-6 and hashimoto's

thyroiditis. PLoS Pathog 8:e1002951. https://doi.org/10.1371/journal.

ppat.1002951

Morimoto RI, Santoro MG. 1998. Stress-inducible responses and heat

shock proteins: new pharmacologic targets for cytoprotection. Nat

Biotechnol 16:833–838. https://doi.org/10.1038/nbt0998-833

Pirkkala L, Nykänen P, Sistonen L. 2001. Roles of the heat shock

transcription factors in regulation of the heat shock response and

beyond. FASEB J 15:1118–1131. https:​/​/​doi.org/​10.1096/​fj00­0294rev

Bolhassani A, Agi E. 2019. Heat shock proteins in infection. Clin Chim

Acta 498:90–100. https://doi.org/10.1016/j.cca.2019.08.015

Funk C, Ott M, Raschbichler V, Nagel C-H, Binz A, Sodeik B, Bauerfeind R,

Bailer SM, Everett RD. 2015. The herpes simplex virus protein pUL31

escorts nucleocapsids to sites of nuclear egress, a process coordinated

by its N-terminal domain. PLoS Pathog 11:e1004957. https://doi.org/10.

1371/journal.ppat.1004957

Wilkie AR, Sharma M, Coughlin M, Pesola JM, Ericsson M, Lawler JL,

Fernandez R, Coen DM. 2022. Human cytomegalovirus nuclear egress

complex subunit, UL53, associates with capsids and myosin VA, but is

not important for capsid localization towards the nuclear periphery.

Viruses 14:479. https://doi.org/10.3390/v14030479

Camozzi D, Pignatelli S, Valvo C, Lattanzi G, Capanni C, Dal Monte P,

Landini MP. 2008. Remodelling of the nuclear lamina during human

cytomegalovirus infection: role of the viral proteins pUL50 and pUL53. J

Gen Virol 89:731–740. https://doi.org/10.1099/vir.0.83377-0

Schmeiser C, Borst E, Sticht H, Marschall M, Milbradt J. 2013. The

cytomegalovirus egress proteins pUL50 and pUL53 are translocated to

the nuclear envelope through two distinct modes of nuclear import. J

Gen Virol 94:2056–2069. https://doi.org/10.1099/vir.0.052571-0

Akerfelt M, Morimoto RI, Sistonen L. 2010. Heat shock factors: integrators

of cell stress, development and lifespan. Nat Rev Mol Cell Biol 11:545–

555. https://doi.org/10.1038/nrm2938

10.1128/jvi.00718-23 21

Downloaded from https://journals.asm.org/journal/jvi on 15 November 2023 by 133.30.169.29.

Journal of Virology

Full-Length Text

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Ali A, Bharadwaj S, O’Carroll R, Ovsenek N. 1998. HSP90 interacts with

and regulates the activity of heat shock factor 1 in Xenopus oocytes. Mol

Cell Biol 18:4949–4960. https://doi.org/10.1128/MCB.18.9.4949

Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R. 1998. Repression of

heat shock transcription factor HSF1 activation by HSP90 (HSP90

complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–

480. https://doi.org/10.1016/s0092-8674(00)81588-3

Yoon YJ, Kim JA, Shin KD, Shin DS, Han YM, Lee YJ, Lee JS, Kwon BM, Han

DC. 2011. KRIBB11 inhibits HSP70 synthesis through inhibition of heat

shock factor 1 function by impairing the recruitment of positive

transcription elongation factor b to the HSP70 promoter. J Biol Chem

286:1737–1747. https://doi.org/10.1074/jbc.M110.179440

Santomenna LD, Colberg-Poley AM. 1990. Induction of cellular HSP70

expression by human cytomegalovirus. J Virol 64:2033–2040. https://doi.

org/10.1128/JVI.64.5.2033-2040.1990

Burch AD, Weller SK. 2004. Nuclear sequestration of cellular chaperone

and proteasomal machinery during herpes simplex virus type 1

infection. J Virol 78:7175–7185. https://doi.org/10.1128/JVI.78.13.71757185.2004

Burch AD, Weller SK. 2005. Herpes simplex virus type 1 DNA polymerase

requires the mammalian chaperone HSP90 for proper localization to the

nucleus. J Virol 79:10740–10749. https://doi.org/10.1128/JVI.79.16.

10740-10749.2005

Yu D, Silva MC, Shenk T. 2003. Functional map of human cytomegalovi­

rus AD169 defined by global mutational analysis. Proc Natl Acad Sci U S

A 100:12396–12401. https://doi.org/10.1073/pnas.1635160100

Sharma M, Kamil JP, Coughlin M, Reim NI, Coen DM. 2014. Human

cytomegalovirus UL50 and UL53 recruit viral protein kinase UL97, not

protein kinase C, for disruption of nuclear lamina and nuclear egress in

infected cells. J Virol 88:249–262. https://doi.org/10.1128/JVI.02358-13

Solit DB, Zheng FF, Drobnjak M, Münster PN, Higgins B, Verbel D, Heller

G, Tong W, Cordon-Cardo C, Agus DB, Scher HI, Rosen N. 2002. 17allylamino-17-demethoxygeldanamycin induces the degradation of

androgen receptor and HER-2/neu and inhibits the growth of prostate

cancer xenografts. Clin Cancer Res 8:986–993.

Massey AJ, Williamson DS, Browne H, Murray JB, Dokurno P, Shaw T,

Macias AT, Daniels Z, Geoffroy S, Dopson M, Lavan P, Matassova N,

Francis GL, Graham CJ, Parsons R, Wang Y, Padfield A, Comer M, Drysdale

MJ, Wood M. 2010. A novel, small molecule inhibitor of HSC70/HSP70

potentiates HSP90 inhibitor induced apoptosis in HCT116 colon

carcinoma cells. Cancer Chemother Pharmacol 66:535–545. https://doi.

org/10.1007/s00280-009-1194-3

Ohgitani E, Kobayashi K, Takeshita K, Imanishi J. 1999. Biphasic

translocation of a 70 kDa heat shock protein in human cytomegalovirusinfected cells. J Gen Virol 80:63–68. https://doi.org/10.1099/0022-131780-1-63

Basha W, Kitagawa R, Uhara M, Imazu H, Uechi K, Tanaka J. 2005.

Geldanamycin, a potent and specific inhibitor of HSP90, inhibits gene

expression and replication of human cytomegalovirus. Antivir Chem

Chemother 16:135–146. https://doi.org/10.1177/095632020501600206

Sun X, Bristol JA, Iwahori S, Hagemeier SR, Meng Q, Barlow EA, Fingeroth

JD, Tarakanova VL, Kalejta RF, Kenney SC. 2013. HSP90 inhibitor 17DMAG decreases expression of conserved herpesvirus protein kinases

and reduces virus production in epstein-barr virus-infected cells. J Virol

87:10126–10138. https://doi.org/10.1128/JVI.01671-13

Song X, Wang Y, Li F, Cao W, Zeng Q, Qin S, Wang Z, Jia J, Xiao J, Hu X, Liu

K, Wang Y, Ren Z. 2021. HSP90 inhibitors inhibit the entry of herpes

simplex virus 1 into neuron cells by regulating cofilin­mediated F-actin

reorganization. Front Microbiol 12:799890. https://doi.org/10.3389/

fmicb.2021.799890

Zhong M, Zheng K, Chen M, Xiang Y, Jin F, Ma K, Qiu X, Wang Q, Peng T,

Kitazato K, Wang Y. 2014. Heat-shock protein 90 promotes nuclear

transport of herpes simplex virus 1 capsid protein by interacting with

acetylated tubulin. PLoS One 9:e99425. https://doi.org/10.1371/journal.

pone.0099425

Li F, Jin F, Wang Y, Zheng D, Liu J, Zhang Z, Wang R, Dong D, Zheng K,

Wang Y. 2018. HSP90 inhibitor AT-533 blocks HSV-1 nuclear egress and

assembly. J Biochem 164:397–406. https://doi.org/10.1093/jb/mvy066

September 2023 Volume 97

Issue 9

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

Qin S, Hu X, Lin S, Xiao J, Wang Z, Jia J, Song X, Liu K, Ren Z, Wang Y.

2021. HSP90 inhibitors prevent HSV-1 replication by directly targeting

UL42-HSP90

complex.

Front

Microbiol

12:797279.

https://doi.org/10.3389/fmicb.2021.797279

Caswell R, Hagemeier C, Chiou CJ, Hayward G, Kouzarides T, Sinclair J.

1993. The human cytomegalovirus 86K immediate early (IE) 2 protein

requires the basic region of the TATA-box binding protein (TBP) for

binding, and interacts with TBP and transcription factor TFIIB via regions

of IE2 required for transcriptional regulation. J Gen Virol 74:2691–2698.

https://doi.org/10.1099/0022-1317-74-12-2691

Hasday JD, Singh IS. 2000. Fever and the heat shock response: distinct,

partially overlapping processes. Cell Stress Chaperones 5:471–480. https:

//doi.org/10.1379/1466-1268(2000)005<0471:fathsr>2.0.co;2

Yao K, Mandel M, Akyani N, Maynard K, Sengamalay N, Fotheringham J,

Ghedin E, Kashanchi F, Jacobson S. 2006. Differential HHV-6A gene

expression in T cells and primary human astrocytes based on multi-virus

array analysis. Glia 53:789–798. https://doi.org/10.1002/glia.20333

Aktar S, Arii J, Tjan LH, Nishimura M, Mori Y, Goodrum F. 2021. Human

herpesvirus 6A tegument protein U14 induces NF-kappaB signaling by

interacting with P65. J Virol 95:e0126921. https://doi.org/10.1128/JVI.

01269-21

Aktar S, Arii J, Nguyen TTH, Huang JR, Nishimura M, Mori Y, Goodrum F.

2022. ATF1 restricts human herpesvirus 6A replication via beta

interferon induction. J Virol 96:e0126422. https://doi.org/10.1128/jvi.

01264-22

Arii J, Maeda F, Maruzuru Y, Koyanagi N, Kato A, Mori Y, Kawaguchi Y.

2020. ESCRT-III controls nuclear envelope deformation induced by

progerin. Sci Rep 10:18877. https://doi.org/10.1038/s41598-020-75852-6

Arii J, Goto H, Suenaga T, Oyama M, Kozuka-Hata H, Imai T, Minowa A,

Akashi H, Arase H, Kawaoka Y, Kawaguchi Y. 2010. Non-muscle myosin

IIA is a functional entry receptor for herpes simplex virus-1. Nature

467:859–862. https://doi.org/10.1038/nature09420

Wang X, Grammatikakis N, Siganou A, Calderwood SK. 2003. Regulation

of molecular chaperone gene transcription involves the serine

phosphorylation, 14-3-3 epsilon binding, and cytoplasmic sequestration

of heat shock factor 1. Mol Cell Biol 23:6013–6026. https://doi.org/10.

1128/MCB.23.17.6013-6026.2003

Tischer BK, von Einem J, Kaufer B, Osterrieder N. 2006. Two-step redmediated recombination for versatile high­efficiency markerless DNA

manipulation in Escherichia coli. Biotechniques 40:191–197. https://doi.

org/10.2144/000112096

Mori Y, Akkapaiboon P, Yang X, Yamanishi K. 2003. The human

herpesvirus 6 U100 gene product is the third component of the gH-gL

glycoprotein complex on the viral envelope. J Virol 77:2452–2458. https:/

/doi.org/10.1128/jvi.77.4.2452-2458.2003

Takemoto M, Koike M, Mori Y, Yonemoto S, Sasamoto Y, Kondo K,

Uchiyama Y, Yamanishi K. 2005. Human herpesvirus 6 open reading

frame U14 protein and cellular P53 interact with each other and are

contained in the virion. J Virol 79:13037–13046. https://doi.org/10.1128/

JVI.79.20.13037-13046.2005

Yoneyama M, Suhara W, Fukuhara Y, Fukuda M, Nishida E, Fujita T. 1998.

Direct triggering of the type I interferon system by virus infection:

activation of a transcription factor complex containing IRF-3 and CBP/

P300. EMBO J 17:1087–1095. https://doi.org/10.1093/emboj/17.4.1087

Arii J, Takeshima K, Maruzuru Y, Koyanagi N, Kato A, Kawaguchi Y. 2019.

Roles of the interhexamer contact site for hexagonal lattice formation of

the herpes simplex virus 1 nuclear egress complex in viral primary

envelopment and replication. J Virol 93:e00498-19. https://doi.org/10.

1128/JVI.00498-19

Maeda F, Arii J, Hirohata Y, Maruzuru Y, Koyanagi N, Kato A, Kawaguchi Y.

2017. Herpes simplex virus 1 UL34 protein regulates the global

architecture of the endoplasmic reticulum in infected cells. J Virol

91:e00271-17. https://doi.org/10.1128/JVI.00271-17

Tang H, Kawabata A, Yoshida M, Oyaizu H, Maeki T, Yamanishi K, Mori Y.

2010. Human herpesvirus 6 encoded glycoprotein Q1 gene is essential

for virus growth. Virology 407:360–367. https://doi.org/10.1016/j.virol.

2010.08.018

10.1128/jvi.00718-23 22

Downloaded from https://journals.asm.org/journal/jvi on 15 November 2023 by 133.30.169.29.

Journal of Virology

Full-Length Text

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る