リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Identification and characterization of genes involved in element transport through ionome screening in Oryza sativa」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Identification and characterization of genes involved in element transport through ionome screening in Oryza sativa

闞, 慢慢 東京大学 DOI:10.15083/0002004433

2022.06.22

概要

Introduction
The ionome is defined as the mineral nutrient and trace element composition of an organism and represents the inorganic component of cellular and organismal systems (Salt et al., 2008). Plants develop strategies to tightly maintain elements homeostasis through regulating processes including uptake, sequestration, translocation, distribution and regulation. Thus, elements accumulation in plants is a complex process regulated by a network of gene products. To gain insight how elements are taken up, sequestered, and translocated, ionome analysis is a helpful way to take elemental concentrations by combining with genetics. In recent years, high-throughput elements analysis, such as inductively coupled plasma mass spectrometry (ICP-MS) combined with genetics have identified genes regulating ionome.

In this study, to investigate elements transport in rice, I focused on ethyl methanesulfonate (EMS)- mutagenized Oryza sativa mutants isolated by ionome screening of brown rice in our laboratory. Through analyzing these mutants, I identified genes involved in Co and Ni transport and detoxification, and distribution of Zn and Cd in rice, respectively.

Chapter 1. OsFPN1 is required for Co and Ni detoxification in rice

In this chapter, through ionome screening, I utilized previously isolated an EMS-mutagenized mutant 1187_n, which exhibited increased Co and Ni in brown rice. To investigate the distribution of Co and Ni in 1187_n, Co and Ni in leaf and xylem sap were determined. High concentrations of Co and Ni were observed in leaf and xylem sap, indicating Co and Ni homeostasis was altered in 1187_n. In addition, the mutant showed sensitivity to high Co and Ni. These results suggest that the causal gene is responsible for both Co and Ni transport from root to shoot and required for high Co and Ni tolerance.

The mutant showed similar ionome phenotype to Arabidopsis thaliana ferroportin (FPN) mutant. Sequencing result of rice homologous gene, OsFPN1, showed that 1187_n has nucleotide substitution following amino acid substitution in OsFPN1. The mutated amino acid is highly conserved in plant and human homologs and predicted to function as metal binding site. To observe the cosegregation of the mutation and the phenotype, I determined Co and Ni concentrations and the genotype in F2 crosses between 1187_n and wild type. The result show that there is a correlation between them. Further, I established two CRISPR/Cas9 lines, and they exhibited increased Co and Ni concentrations in shoot. These data demonstrated that the causal gene responsible for the alteration of Co and Ni in 1187_n is OsFPN1.

To investigate the Co and Ni transport activity of OsFPN1, GFP-fused OsFPN1 (GFP-OsFPN1) was expressed in yeast. Heterologous expression of GFP-OsFPN1 increased sensitivity to high Co. Furthermore, the yeast expressing GFP-OsFPN1 accumulated low Co and Ni compared to that of empty vector. These results demonstrate that OsFPN1 is able to transport Co and Ni. To determine the subcellular localization, GFP-OsFPN1 was transiently expressed in protoplast prepared from leaf sheath. The fluorescence was observed as dot in cell. The GFP fluorescence was colocalized with Golgi marker protein, indicating OsFPN1 is localized to Golgi. Taken together, OsFPN1 is Golgilocalized Co and Ni transporter.

It has been reported that the function of Arabidopsis FPN2 is to prevent the transport of excess Co and Ni to shoot by sequestering them in root. To test if the OsFPN1 has similar function in rice, I grew wild type and mutant under different concentrations of Co and Ni, and Fe. In both wild type and the mutant, Co and Ni concentrations increased as Fe concentration in hydroponic culture decreased both in roots and shoots. However, the difference between wild type and the mutant became larger. This suggests OsFPN1 contributes to prevention of Co and Ni transport from root to shoot. Taken together, OsFPN1 is required for the Co and Ni tolerance especially under low Fe condition.

Co and Ni are contaminant of soil and inhibit the growth of plants. To test if overexpression of OsFPN1 confer the tolerance to rice, I grew rice under high Co or Ni condition. Overexpression of OsFPN1 exhibited dramatically longer shoot compared to wild-type Nipponbare under high Co condition, indicating OsFPN1 is useful gene to confer tolerance to these elements.

Chapter 2. Identification of novel allele of OsHMA2, a Zn and Cd transporter

In chapter 2, I utilized previously identified EMS-mutagenized mutant named 391_n, which exhibited decreased Zn in brown rice, through ionome screening. To investigate the distribution of Zn in 391_n, elements in shoot and xylem sap of 391_n were determined. Zn and Cd concentrations were reduced both in shoot and xylem sap, indicating that the causal gene is responsible for the shoot to root transport of these elements. To identify the gene responsible for the alteration of Zn and Cd concentrations in 391_n, 391_n was back crossed with wild type, and Zn and Cd concentrations were determined in F2 population. Zn and Cd concentrations were correlated with each other in F2 population, indicating that the same gene is responsible for the Zn and Cd alteration. To identify the gene, I used 15 plants of high and low Zn and Cd concentrations, respectively, for genetic mapping using next generation sequencer. The analysis showed that the causal gene was located at a region between 27217030 bp and 31042767 bp on chromosome 6. In this region, OsHMA2, a known Zn transporter, had nucleotide substitution following amino acid substitution. The mutation site is highly conserved among plants. The Tos17 mutants of OsHMA2 exhibited low Zn and Cd in shoot but inverse in root compared to wild type, which is similar to 391_n. These results suggest OsHMA2 is the causal gene of 391_n and is responsible for root to shoot transport of Zn and Cd. To investigate Zn distribution among leaves, Zn concentration in leaf blade were determined. Zn distribution of the mutant was different from that of wild type: in wild type, Zn concentration of flag leaf is higher than other old leaves, however, in 391_n, Zn concentration is similar among leaves. These results suggest that OsHMA2 is also involved in Zn distribution among leaves.

Summary
In this thesis, through the characterization of EMS-mutagenized Oryza sativa mutants isolated by ionome screening, two genes associated with elements transport were identified and characterized. In chapter 1, OsFPN1 was demonstrated to be responsible for Co and Ni transport and tolerance. In addition, I succeeded in establishing Co and Ni tolerance rice. In chapter 2, a novel allele of OsHMA2 was identified and is responsible for the root to shoot translocation of Zn and Cd and distribution among leaves.

Co is the beneficial element and Ni is the essential element for plant. However, to date, the mechanism of Co and Ni transport and detoxification in rice is unclear. Through the achievements of my thesis, I gain insight into how Co and Ni are transported in rice and established Co and Ni tolerance lines, which can be applicable for removing excess Co and Ni from high Co and Ni containing soil. In addition, I identified a novel OsHMA2 allele and illustrate the conserved glycine in the exon 6 of OsHMA2 is critical for the distribution of Zn and Cd.

この論文で使われている画像

参考文献

ABBOUD, S. & HAILE, D. J. 2000. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem, 275, 19906-12.

AGGARWAL, N., LAURA, J. S. & SHEORAN, I. S. 1990. Effect of Cadmium and Nickel on Germination, Early Seedling Growth and Photosynthesis of Wheat and Pigeonpea. International Journal of Tropical Agriculture, 8, 141-147.

AIMOLA, P., CARMIGNANI, M., VOLPE, A. R., DI BENEDETTO, A., CLAUDIO, L., WAALKES, M. P., VAN BOKHOVEN, A., TOKAR, E. J. & CLAUDIO, P. P. 2012. Cadmium Induces p53-Dependent Apoptosis in Human Prostate Epithelial Cells. Plos One, 7.

AKESSON, A., BARREGARD, L., BERGDAHL, I. A., NORDBERG, G. F., NORDBERG, M. & SKERFVING, S. 2014. Non-renal effects and the risk assessment of environmental cadmium exposure. Environ Health Perspect, 122, 431-8.

ALCANTARA, E., ROMERA, F. J., CANETE, M. & DELAGUARDIA, M. D. 1994. Effects of Heavy-Metals on Both Induction and Function of Root Fe(Iii) Reductase in Fe-Deficient Cucumber (Cucumis-Sativus L) Plants. Journal of Experimental Botany, 45, 1893-1898.

ALEJANDRO, S., CAILLIATTE, R., ALCON, C., DIRICK, L., DOMERGUE, F., CORREIA, D., CASTAINGS, L., BRIAT, J. F., MARI, S. & CURIE, C. 2017. Intracellular Distribution of Manganese by the Trans-Golgi Network Transporter NRAMP2 Is Critical for Photosynthesis and Cellular Redox Homeostasis. Plant Cell, 29, 3068-3084.

ARGUELLO, J. M., EREN, E. & GONZALEZ-GUERRERO, M. 2007. The structure and function of heavy metal transport P1B-ATPases. Biometals, 20, 233-48.

ARRIVAULT, S., SENGER, T. & KRAMER, U. 2006. The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. Plant Journal, 46, 861-879.

ASSUNCAO, A. G. L., HERRERO, E., LIN, Y. F., HUETTEL, B., TALUKDAR, S., SMACZNIAK, C., IMMINK, R. G. H., VAN ELDIK, M., FIERS, M., SCHAT, H. &

AARTS, M. G. M. 2010. Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proceedings of the National Academy of Sciences of the United States of America, 107, 10296-10301.

AULD, D. S. 2001. Zinc coordination sphere in biochemical zinc sites. Biometals, 14, 271-313.

BAI, C., REILLY, C. C. & WOOD, B. W. 2006. Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage. Plant Physiology, 140, 433-443.

BAILEY, S., THOMPSON, E., NIXON, P. J., HORTON, P., MULLINEAUX, C. W., ROBINSON, C. & MANN, N. H. 2002. A critical role for the Var2 FtsH homologue of Arabidopsis thaliana in the photosystem II repair cycle in vivo. Journal of Biological Chemistry, 277, 2006-2011.

BALESTRASSE, K. B., BENAVIDES, M. P., GALLEGO, S. M. & TOMARO, M. L. 2003. Effect of cadmium stress on nitrogen metabolism in nodules and roots of soybean plants. Functional Plant Biology, 30, 57-64.

BARCELO, J., POSCHENRIEDER, C., ANDREU, I. & GUNSE, B. 1986. CadmiumInduced Decrease of Water-Stress Resistance in Bush Bean-Plants (Phaseolus-Vulgaris L Cv Contender) .1. Effects of Cd on Water Potential, Relative Water-Content, and Cell-Wall Elasticity. Journal of Plant Physiology, 125, 17-25.

BAXTER, I., HOSMANI, P. S., RUS, A., LAHNER, B., BOREVITZ, J. O., MUTHUKUMAR, B., MICKELBART, M. V., SCHREIBER, L., FRANKE, R. B. & SALT, D. E. 2009. Root Suberin Forms an Extracellular Barrier That Affects Water Relations and Mineral Nutrition in Arabidopsis. Plos Genetics, 5.

BAXTER, I. R., ZIEGLER, G., LAHNER, B., MICKELBART, M. V., FOLEY, R., DANKU, J., ARMSTRONG, P., SALT, D. E. & HOEKENGA, O. A. 2014. Single-Kernel Ionomic Profiles Are Highly Heritable Indicators of Genetic and Environmental Influences on Elemental Accumulation in Maize Grain (Zea mays). Plos One,9.

BELOUCHI, A., KWAN, T. & GROS, P. 1997. Cloning and characterization of the OsNramp family from Oryza sativa, a new family of membrane proteins possibly implicated in the transport of metal ions. Plant Molecular Biology, 33, 1085-1092.

BERNARD, A. 2008. Cadmium & its adverse effects on human health. Indian Journal of Medical Research, 128, 557-564.

BISHNOI, N. R., SHEORAN, I. S. & SINGH, R. 1993. Influence of Cadmium and Nickel on Photosynthesis and Water Relations in Wheat Leaves of Different Insertion Level. Photosynthetica, 28, 473-479.

BORGHI, M., RUS, A. & SALT, D. E. 2011. Loss-of-function of Constitutive Expresser of Pathogenesis Related Genes5 affects potassium homeostasis in Arabidopsis thaliana. PLoS One, 6, e26360.

BOTHE, H., SCHMITZ, O., YATES, M. G. & NEWTON, W. E. 2010. Nitrogen Fixation and Hydrogen Metabolism in Cyanobacteria. Microbiology and Molecular Biology Reviews, 74, 529-551.

BROADLEY, M. R., WHITE, P. J., HAMMOND, J. P., ZELKO, I. & LUX, A. 2007. Zinc in plants. New Phytologist, 173, 677-702.

BROWN, K. H., PEERSON, J. M., RIVERA, J. & ALLEN, L. H. 2002. Effect of supplemental zinc on the growth and serum zinc concentrations of prepubertal children: a meta-analysis of randomized controlled trials. American Journal of Clinical Nutrition, 75, 1062-1071.

BROWN, P. H., WELCH, R. M. & CARY, E. E. 1987. Nickel: a micronutrient essential for higher plants. Plant Physiol, 85, 801-3.

BUGHIO, N., YAMAGUCHI, H., NISHIZAWA, N. K., NAKANISHI, H. & MORI, S. 2002. Cloning an iron-regulated metal transporter from rice. J Exp Bot, 53, 1677-82.

CAILLIATTE, R., LAPEYRE, B., BRIAT, J. F., MARI, S. & CURIE, C. 2009. The NRAMP6 metal transporter contributes to cadmium toxicity. Biochemical Journal, 422, 217-228.

CAILLIATTE, R., SCHIKORA, A., BRIAT, J. F., MARI, S. & CURIE, C. 2010. HighAffinity Manganese Uptake by the Metal Transporter NRAMP1 Is Essential for Arabidopsis Growth in Low Manganese Conditions. Plant Cell, 22, 904-917.

CAMPBELL, G. R. O., TAGA, M. E., MISTRY, K., LLORET, J., ANDERSON, P. J., ROTH, J. R. & WALKER, G. C. 2006. Sinorhizobium meliloti bluB is necessary for production of 5,6-dimethylbenzimidazole, the lower ligand of B-12. Proceedings of the National Academy of Sciences of the United States of America, 103, 4634-4639.

CAO, F. Q., WERNER, A. K., DAHNCKE, K., ROMEIS, T., LIU, L. H. & WITTE, C. P. 2010. Identification and characterization of proteins involved in rice urea and arginine catabolism. Plant Physiol, 154, 98-108.

CAYTON, M. T. C., REYES, E. D. & NEUE, H. U. 1985. Effect of Zinc Fertilization on the Mineral-Nutrition of Rices Differing in Tolerance to Zinc-Deficiency. Plant and Soil, 87, 319-327.

CHAKRABARTY, D., TRIVEDI, P. K., MISRA, P., TIWARI, M., SHRI, M., SHUKLA, D., KUMAR, S., RAI, A., PANDEY, A., NIGAM, D., TRIPATHI, R. D. & TULI, R. 2009. Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings. Chemosphere, 74, 688-702.

CHATTERJEE, C., GOPAL, R. & DUBE, B. K. 2006. Physiological and biochemical responses of French bean to excess cobalt. Journal of Plant Nutrition, 29, 127-136.

CHATTERJEE, J. & CHATTERJEE, C. 2005. Deterioration of fruit quality of tomato by excess cobalt and its amelioration. Communications in Soil Science and Plant Analysis, 36, 1931-1945.

CHEN, C. Y., HUANG, D. J. & LIU, J. Q. 2009. Functions and Toxicity of Nickel in Plants: Recent Advances and Future Prospects. Clean-Soil Air Water, 37, 304-313.

CHEN, W. R., FENG, Y. & CHAO, Y. E. 2008. Genomic analysis and expression pattern of OsZIP1, OsZIP3, and OsZIP4 in two rice (Oryza sativa L.) genotypes with different zinc efficiency. Russian Journal of Plant Physiology, 55, 400-409.

CLARKE, J. D., VOLKO, S. M., LEDFORD, H., AUSUBEL, F. M. & DONG, X. N. 2000. Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis. Plant Cell, 12, 2175-2190.

COCUCCI, S. M. & MORGUTTI, S. 1986. Stimulation of Proton Extrusion by K+ and Divalent-Cations (Ni-2+, Co-2+, Zn-2+) in Maize Root Segments. Physiologia Plantarum, 68, 497-501.

COLANGELO, E. P. & GUERINOT, M. L. 2006. Put the metal to the petal: metal uptake and transport throughout plants. Current Opinion in Plant Biology, 9, 322-330.

CONKLIN, D. S., MCMASTER, J. A., CULBERTSON, M. R. & KUNG, C. 1992. COT1, a gene involved in cobalt accumulation in Saccharomyces cerevisiae. Mol Cell Biol, 12, 3678-88.

CONTE, S. S. & LLOYD, A. M. 2010. The MAR1 transporter is an opportunistic entry point for antibiotics. Plant Signal Behav, 5, 49-52.

COOGAN, T. P., LATTA, D. M., SNOW, E. T. & COSTA, M. 1989. Toxicity and Carcinogenicity of Nickel Compounds. Crc Critical Reviews in Toxicology, 19, 341-384.

COSTA, G. & MOREL, J. L. 1994. Water Relations, Gas-Exchange and Amino-Acid Content in Cd-Treated Lettuce. Plant Physiology and Biochemistry, 32, 561-570.

CURTIS, M. D. & GROSSNIKLAUS, U. 2003. A gateway cloning vector set for highthroughput functional analysis of genes in planta. Plant Physiol, 133, 462-9.

CUYPERS, A., PLUSQUIN, M., REMANS, T., JOZEFCZAK, M., KEUNEN, E., GIELEN, H., OPDENAKKER, K., NAIR, A. R., MUNTERS, E., ARTOIS, T. J., NAWROT, T., VANGRONSVELD, J. & SMEETS, K. 2010. Cadmium stress: an oxidative challenge. Biometals, 23, 927-40.

DAS, P., SAMANTARAY, S. & ROUT, G. R. 1997. Studies on cadmium toxicity in plants: A review. Environmental Pollution, 98, 29-36.

DENG, F. L., YAMAJI, N., XIA, J. X. & MA, J. F. 2013. A Member of the Heavy Metal P-Type ATPase OsHMA5 Is Involved in Xylem Loading of Copper in Rice. Plant Physiology, 163, 1353-1362.

DIETER, M. P., JAMESON, C. W., TUCKER, A. N., LUSTER, M. I., FRENCH, J. E., HONG, H. L. & BOORMAN, G. A. 1988. Evaluation of tissue disposition, myelopoietic, and immunologic responses in mice after long-term exposure to nickel sulfate in the drinking water. J Toxicol Environ Health, 24, 357-72.

DILWORTH, M. J., ROBSON, A. D. & CHATEL, D. L. 1979. Cobalt and NitrogenFixation in Lupinus Angustifolius L .2. Nodule Formation and Function. New Phytologist, 83, 63-79.

DINNENY, J. R. 2008. Cell identity mediates the response of Arabidopsis roots to abiotic stress (vol 320, pg 942, 2008). Science, 322, 44-44.

DIXON, N. E., GAZZOLA, T. C., BLAKELEY, R. L. & ZERMER, B. 1975. Letter: Jack bean urease (EC 3.5.1.5). A metalloenzyme. A simple biological role for nickel? J Am Chem Soc, 97, 4131-3.

DONOVAN, A., BROWNLIE, A., ZHOU, Y., SHEPARD, J., PRATT, S. J., MOYNIHAN, J., PAW, B. H., DREJER, A., BARUT, B., ZAPATA, A., LAW, T. C., BRUGNARA, C., LUX, S. E., PINKUS, G. S., PINKUS, J. L., KINGSLEY, P. D., PALIS, J., FLEMING, M. D., ANDREWS, N. C. & ZON, L. I. 2000. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature, 403, 776-81.

DONOVAN, A., LIMA, C. A., PINKUS, J. L., PINKUS, G. S., ZON, L. I., ROBINE, S. & ANDREWS, N. C. 2005. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metabolism, 1, 191-200.

EIDE, D., BRODERIUS, M., FETT, J. & GUERINOT, M. L. 1996. A novel ironregulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci U S A, 93, 5624-8.

ENG, B. H., GUERINOT, M. L., EIDE, D. & SAIER, M. H. 1998. Sequence analyses and phylogenetic characterization of the ZIP family of metal ion transport proteins. Journal of Membrane Biology, 166, 1-7.

ESKEW, D. L., WELCH, R. M. & CARY, E. E. 1983. Nickel - an Essential Micronutrient for Legumes and Possibly All Higher-Plants. Science, 222, 621-623.

ESKEW, D. L., WELCH, R. M. & NORVELL, W. A. 1984. Nickel in Higher-Plants - Further Evidence for an Essential Role. Plant Physiology, 76, 691-693.

EWAIS, E. A. 1997. Effects of cadmium, nickel and lead on growth, chlorophyll content and proteins of weeds. Biologia Plantarum, 39, 403-410.

FODOR, E., SZABONAGY, A. & ERDEI, L. 1995. The Effects of Cadmium on the Fluidity and H+-Atpase Activity of Plasma-Membrane from Sunflower and Wheat Roots. Journal of Plant Physiology, 147, 87-92.

FU, Y. F., SANDER, J. D., REYON, D., CASCIO, V. M. & JOUNG, J. K. 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology, 32, 279-284.

GALAN, A., GARCIA-BERMEJO, L., TROYANO, A., VILABOA, N. E., FERNANDEZ, C., DE BLAS, E. & ALLER, P. 2001. The role of intracellular oxidation in death induction (apoptosis and necrosis) in human promonocytic cells treated with stress inducers (cadmium, heat, X-rays). European Journal of Cell Biology, 80, 312-320.

GOPAL, R., DUBE, B. K., SINHA, P. & CHATTERJEE, C. 2003. Cobalt toxicity effects on growth and metabolism of tomato. Communications in Soil Science and Plant Analysis, 34, 619-628.

GOYER, R. A. 1991. Transplacental Transport of Toxic Metals and Fetal Effects - Summary of the Symposium Presented at the 29th Annual-Meeting of the Society-of-Toxicology, February 12-16, 1990, Miami-Beach, Florida. Fundamental and Applied Toxicology, 16, 14-14.

GROTZ, N., FOX, T., CONNOLLY, E., PARK, W., GUERINOT, M. L. & EIDE, D. 1998. Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proceedings of the National Academy of Sciences of the United States of America, 95, 7220-7224.

GROTZ, N. & GUERINOT, M. L. 2006. Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochimica Et Biophysica Acta-Molecular Cell Research, 1763, 595-608.

GU, R. L., CHEN, F. J., LIU, B. R., WANG, X., LIU, J. C., LI, P. C., PAN, Q. C., PACE, J., SOOMRO, A. A., LUBBERSTEDT, T., MI, G. H. & YUAN, L. X. 2015. Comprehensive phenotypic analysis and quantitative trait locus identification for grain mineral concentration, content, and yield in maize (Zea mays L.). Theoretical and Applied Genetics, 128, 1777-1789.

GUERINOT, M. L. 2000. The ZIP family of metal transporters. Biochimica Et Biophysica Acta-Biomembranes, 1465, 190-198.

HAMBIDGE, K. M. & WALRAVENS, P. A. 1982. Disorders of mineral metabolism. Clin Gastroenterol, 11, 87-117.

HANSCH, R. & MENDEL, R. R. 2009. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology, 12, 259-266.

HARTMANN, A., SCHMID, M., VAN TUINEN, D. & BERG, G. 2009. Plant-driven selection of microbes. Plant and Soil, 321, 235-257.

HAYASHI, H., ISHIKAWA-SAKURAI, J., MURAI-HATANO, M., AHAMED, A. & UEMURA, M. 2015. Aquaporins in developing rice grains. Bioscience Biotechnology and Biochemistry, 79, 1422-1429.

HERNANDEZ, L. E., CARPENARUIZ, R. & GARATE, A. 1996. Alterations in the mineral nutrition of pea seedlings exposed to cadmium. Journal of Plant Nutrition, 19, 1581-1598.

HOSMANI, P. S., KAMIYA, T., DANKU, J., NASEER, S., GELDNER, N., GUERINOT, M. L. & SALT, D. E. 2013. Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based Casparian strip in the root (vol 110, pg 14498, 2013). Proceedings of the National Academy of Sciences of the United States of America, 110, 16283-16283.

HUANG, X. Y., DENG, F., YAMAJI, N., PINSON, S. R., FUJII-KASHINO, M., DANKU, J., DOUGLAS, A., GUERINOT, M. L., SALT, D. E. & MA, J. F. 2016. A heavy metal P-type ATPase OsHMA4 prevents copper accumulation in rice grain. Nat Commun, 7, 12138.

HUANG, X. Y. & SALT, D. E. 2016. Plant Ionomics: From Elemental Profiling to Environmental Adaptation. Molecular Plant, 9, 787-797.

HUSSAIN, D., HAYDON, M. J., WANG, Y., WONG, E., SHERSON, S. M., YOUNG, J., CAMAKARIS, J., HARPER, J. F. & COBBETT, C. S. 2004. P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell, 16, 1327-1339.

IMTIAZ, M., RASHID, A., KHAN, P., MEMON, M. Y. & ASLAM, M. 2010. The Role of Micronutrients in Crop Production and Human Health. Pakistan Journal of Botany, 42, 2565-2578.

INABA, S., KURATA, R., KOBAYASHI, M., YAMAGISHI, Y., MORI, I., OGATA, Y. & FUKAO, Y. 2015. Identification of putative target genes of bZIP19, a transcription factor essential for Arabidopsis adaptation to Zn deficiency in roots. Plant Journal, 84, 323-334.

ISHIMARU, Y., SUZUKI, M., KOBAYASHI, T., TAKAHASHI, M., NAKANISHI, H., MORI, S. & NISHIZAWA, N. K. 2005. OsZIP4, a novel zinc-regulated zinc transporter in rice. Journal of Experimental Botany, 56, 3207-3214.

ISHIMARU, Y., SUZUKI, M., TSUKAMOTO, T., SUZUKI, K., NAKAZONO, M., KOBAYASHI, T., WADA, Y., WATANABE, S., MATSUHASHI, S., TAKAHASHI, M., NAKANISHI, H., MORI, S. & NISHIZAWA, N. K. 2006. Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant Journal, 45, 335-346.

KALAPOS, M. P. 2008. The tandem of free radicals and methylglyoxal. Chem Biol Interact, 171, 251-71.

KAMIYA, T., BORGHI, M., WANG, P., DANKU, J. M. C., KALMBACH, L., HOSMANI, P. S., NASEER, S., FUJIWARA, T., GELDNER, N. & SALT, D. E. 2015. The MYB36 transcription factor orchestrates Casparian strip formation. Proceedings of the National Academy of Sciences of the United States of America, 112, 10533-10538.

KARLENGEN, I. J., TAUGBOL, O., SALBU, B., AASTVEIT, A. H. & HARSTAD, O. M. 2013. Effect of different levels of supplied cobalt on the fatty acid composition of bovine milk. British Journal of Nutrition, 109, 834-843.

KAVITHA, P. G., KURUVILLA, S. & MATHEW, M. K. 2015. Functional characterization of a transition metal ion transporter, OsZIP6 from rice (Oryza sativa L.). Plant Physiology and Biochemistry, 97, 165-174.

KERBY, R. L., LUDDEN, P. W. & ROBERTS, G. P. 1997. In vivo nickel insertion into the carbon monoxide dehydrogenase of Rhodospirillum rubrum: Molecular and physiological characterization of cooCTJ. Journal of Bacteriology, 179, 2259-2266.

KHALID, B. Y. & TINSLEY, J. 1980. Some Effects of Nickel Toxicity on Rye Grass. Plant and Soil, 55, 139-144.

KOO, A. J. K. & OHLROGGE, J. B. 2002. The predicted candidates of arabidopsis plastid inner envelope membrane proteins and their expression profiles. Plant Physiology, 130, 823-836.

KORSHUNOVA, Y. O., EIDE, D., CLARK, W. G., GUERINOT, M. L. & PAKRASI, H. B. 1999. The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Molecular Biology, 40, 37-44.

KRAUTLER, B. 2012. Biochemistry of B12-cofactors in human metabolism. Subcell Biochem, 56, 323-46.

KROGMEIER, M. J., MCCARTY, G. W. & BREMNER, J. M. 1989. Phytotoxicity of Foliar-Applied Urea. Proceedings of the National Academy of Sciences of the United States of America, 86, 8189-8191.

LAHNER, B., GONG, J., MAHMOUDIAN, M., SMITH, E. L., ABID, K. B., ROGERS, E. E., GUERINOT, M. L., HARPER, J. F., WARD, J. M., MCINTYRE, L., SCHROEDER, J. I. & SALT, D. E. 2003. Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nat Biotechnol, 21, 1215-21.

LANQUAR, V., LELIEVRE, F., BOLTE, S., HAMES, C., ALCON, C., NEUMANN, D., VANSUYT, G., CURIE, C., SCHRODER, A., KRAMER, U., BARBIERBRYGOO, H. & THOMINE, S. 2005. Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. Embo Journal, 24, 4041-4051. LEE, M. H., MULROONEY, S. B. & HAUSINGER, R. P. 1990. Purification, characterization, and in vivo reconstitution of Klebsiella aerogenes urease apoenzyme. J Bacteriol, 172, 4427-31.

LEE, M. H., MULROONEY, S. B., RENNER, M. J., MARKOWICZ, Y. & HAUSINGER, R. P. 1992. Klebsiella aerogenes urease gene cluster: sequence of ureD and demonstration that four accessory genes (ureD, ureE, ureF, and ureG) are involved in nickel metallocenter biosynthesis. J Bacteriol, 174, 4324-30.

LEE, S., JEONG, H. J., KIM, S. A., LEE, J., GUERINOT, M. L. & AN, G. 2010a. OsZIP5 is a plasma membrane zinc transporter in rice. Plant Molecular Biology, 73, 507-517.

LEE, S., KIM, S. A., LEE, J., GUERINOT, M. L. & AN, G. 2010b. Zinc DeficiencyInducible OsZIP8 Encodes a Plasma Membrane-Localized Zinc Transporter in Rice. Molecules and Cells, 29, 551-558.

LEE, S., KIM, Y. Y., LEE, Y. & AN, G. 2007. Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiol, 145, 831-42.

LI, J. Y., LIU, J. P., DONG, D. K., JIA, X. M., MCCOUCH, S. R. & KOCHIAN, L. V. 2014a. Natural variation underlies alterations in Nramp aluminum transporter (NRAT1) expression and function that play a key role in rice aluminum tolerance. Proceedings of the National Academy of Sciences of the United States of America, 111, 6503-6508.

LI, M. S., FILICE, F. P. & DING, Z. 2014b. A time course study of cadmium effect on membrane permeability of single human bladder cancer cells using scanning electrochemical microscopy. J Inorg Biochem, 136, 177-83.

LILAY, G. H., CASTRO, P. H., CAMPILHO, A. & ASSUNCAO, A. G. L. 2019. The Arabidopsis bZIP19 and bZIP23 Activity Requires Zinc Deficiency - Insight on Regulation From Complementation Lines. Frontiers in Plant Science, 9.

LIN, C. W., CHANG, H. B. & HUANG, H. J. 2005. Zinc induces mitogen-activated protein kinase activation mediated by reactive oxygen species in rice roots. Plant Physiology and Biochemistry, 43, 963-968.

LIU, J., REID, R. J. & SMITH, F. A. 2000. The mechanism of cobalt toxicity in mung beans. Physiologia Plantarum, 110, 104-110.

MARSCHNER, C., BAUMGARTNER, J. & GRIENGL, H. 1995. Synthesis of All Stereoisomeric Carbapentofuranoses. Journal of Organic Chemistry, 60, 5224- 5235.

MCKIE, A. T., MARCIANI, P., ROLFS, A., BRENNAN, K., WEHR, K., BARROW, D., MIRET, S., BOMFORD, A., PETERS, T. J., FARZANEH, F., HEDIGER, M. A., HENTZE, M. W. & SIMPSON, R. J. 2000. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Molecular Cell, 5, 299-309.

MCNEAR, D. H., CHANEY, R. L. & SPARKS, D. L. 2010. The hyperaccumulator Alyssum murale uses complexation with nitrogen and oxygen donor ligands for Ni transport and storage. Phytochemistry, 71, 188-200.

MERLOT, S., HANNIBAL, L., MARTINS, S., MARTINELLI, L., AMIR, H., LEBRUN, M. & THOMINE, S. 2014. The metal transporter PgIREG1 from the hyperaccumulator Psychotria gabriellae is a candidate gene for nickel tolerance and accumulation. Journal of Experimental Botany, 65, 1551-1564.

MIKAMI, M., TOKI, S. & ENDO, M. 2015. Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice. Plant Molecular Biology, 88, 561-572.

MILNER, M. J., CRAFT, E., YAMAJI, N., KOYAMA, E., MA, J. F. & KOCHIAN, L. V. 2012. Characterization of the high affinity Zn transporter from Noccaea caerulescens, NcZNT1, and dissection of its promoter for its role in Zn uptake and hyperaccumulation. New Phytol, 195, 113-23.

MOBLEY, H. L., ISLAND, M. D. & HAUSINGER, R. P. 1995. Molecular biology of microbial ureases. Microbiol Rev, 59, 451-80.

MOHANTY, N., VASS, I. & DEMETER, S. 1989. Impairment of Photosystem-2 Activity at the Level of Secondary Quinone Electron-Acceptor in Chloroplasts Treated with Cobalt, Nickel and Zinc Ions. Physiologia Plantarum, 76, 386-390.

MOLAS, J. 1997. Changes in morphological and anatomical structure of cabbage (Brassica oleracea L.) outer leaves and in ultrastructure of their chloroplasts caused by an in vitro excess of nickel. Photosynthetica, 34, 513-522.

MOLLER, J. V., JUUL, B. & LEMAIRE, M. 1996. Structural organization, ion transport, and energy transduction of P-type ATPases. Biochimica Et Biophysica ActaReviews on Biomembranes, 1286, 1-51.

MOREL, M., CROUZET, J., GRAVOT, A., AUROY, P., LEONHARDT, N., VAVASSEUR, A. & RICHAUD, P. 2009. AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol, 149, 894-904.

MORESCO, E. M. Y., LI, X. H. & BEUTLER, B. 2013. Going Forward with Genetics Recent Technological Advances and Forward Genetics in Mice. American Journal of Pathology, 182, 1462-1473.

MORRISSEY, J., BAXTER, I. R., LEE, J., LI, L., LAHNER, B., GROTZ, N., KAPLAN, J., SALT, D. E. & GUERINOT, M. L. 2009. The ferroportin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis. Plant Cell, 21, 3326-38.

MORSELT, A. F. W. 1991. Special Issue - Environmental-Pollutants and Diseases - a Cell Biological Approach Using Chronic Cadmium Exposure in the AnimalModel as a Paradigm Case. Toxicology, 70, 1-+.

MUSTAFIZ, A., GHOSH, A., TRIPATHI, A. K., KAUR, C., GANGULY, A. K., BHAVESH, N. S., TRIPATHI, J. K., PAREEK, A., SOPORY, S. K. & SINGLAPAREEK, S. L. 2014. A unique Ni2+ -dependent and methylglyoxal-inducible rice glyoxalase I possesses a single active site and functions in abiotic stress response. Plant J, 78, 951-63.

NAKAGAWA, T., ISHIGURO, S. & KIMURA, T. 2009. Gateway vectors for plant transformation. Plant Biotechnology, 26, 275-284.

NAKANISHI, H., OGAWA, I., ISHIMARU, Y., MORI, S. & NISHIZAWA, N. K. 2006. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Science and Plant Nutrition, 52, 464-469.

NEUE, H. U., QUIJANO, C., SENADHIRA, D. & SETTER, T. 1998. Strategies for dealing with micronutrient disorders and salinity in lowland rice systems. Field Crops Research, 56, 139-155.

NEVO, Y. & NELSON, N. 2006. The NRAMP family of metal-ion transporters. Biochimica Et Biophysica Acta-Molecular Cell Research, 1763, 609-620.

NIELSEN, N. H., MENNE, T., KRISTIANSEN, J., CHRISTENSEN, J. M., BORG, L. & POULSEN, L. K. 1999. Effects of repeated skin exposure to low nickel concentrations: a model for allergic contact dermatitis to nickel on the hands. British Journal of Dermatology, 141, 676-682.

NISHIDA, S., TSUZUKI, C., KATO, A., AISU, A., YOSHIDA, J. & MIZUNO, T. 2011. AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana. Plant Cell Physiol, 52, 1433-42.

NIXON, P. J., BARKER, M., BOEHM, M., DE VRIES, R. & KOMENDA, J. 2005. FtsHmediated repair of the photosystem II complex in response to light stress. J Exp Bot, 56, 357-63.

NOCITO, F. F., LANCILLI, C., DENDENA, B., LUCCHINI, G. & SACCHI, G. A. 2011. Cadmium retention in rice roots is influenced by cadmium availability, chelation and translocation. Plant Cell and Environment, 34, 994-1008.

OZAWA, K. 2012. A high-efficiency Agrobacterium-mediated transformation system of rice (Oryza sativa L.). Methods Mol Biol, 847, 51-7.

PANDEY, N. & SHARMA, C. P. 2002. Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Science, 163, 753-758.

PARENT, S. E., PARENT, L. E., EGOZCUE, J. J., ROZANE, D. E., HERNANDES, A., LAPOINTE, L., HEBERT-GENTILE, V., NAESS, K., MARCHAND, S., LAFOND, J., MATTOS, D., BARLOW, P. & NATALE, W. 2013. The plant ionome revisited by the nutrient balance concept. Frontiers in Plant Science, 4.

PECK, A. W. & MCDONALD, G. K. 2010. Adequate zinc nutrition alleviates the adverse effects of heat stress in bread wheat. Plant and Soil, 337, 355-374.

PERIS-PERIS, C., SERRA-CARDONA, A., SANCHEZ-SANUY, F., CAMPO, S., ARINO, J. & SAN SEGUNDO, B. 2017. Two NRAMP6 Isoforms Function as Iron and Manganese Transporters and Contribute to Disease Resistance in Rice. Molecular Plant-Microbe Interactions, 30, 385-398. PFISTER, A., BARBERON, M., ALASSIMONE, J., KALMBACH, L., LEE, Y., VERMEER, J. E. M., YAMAZAKI, M., LI, G. W., MAUREL, C., TAKANO, J., KAMIYA, T., SALT, D. E., ROPPOLO, D. & GELDNER, N. 2014. A receptorlike kinase mutant with absent endodermal diffusion barrier displays selective nutrient homeostasis defects. Elife, 3.

PILON-SMITS, E. A. H., QUINN, C. F., TAPKEN, W., MALAGOLI, M. & SCHIAVON, M. 2009. Physiological functions of beneficial elements. Current Opinion in Plant Biology, 12, 267-274.

PINSON, S. R. M., TARPLEY, L., YAN, W. G., YEATER, K., LAHNER, B., YAKUBOVA, E., HUANG, X. Y., ZHANG, M., GUERINOT, M. L. & SALT, D. E. 2015. Worldwide Genetic Diversity for Mineral Element Concentrations in Rice Grain. Crop Science, 55, 294-311.

POLACCO, J. C., FREYERMUTH, S. K., GERENDAS, J. & CIANZIO, S. R. 1999. Soybean genes involved in nickel insertion into urease. Journal of Experimental Botany, 50, 1149-1156.

POLACCO, J. C. & HOLLAND, M. A. 1993. Roles of Urease in Plant-Cells. International Review of Cytology - a Survey of Cell Biology, Vol 145, 145, 65-103.

QADAR, A. 2002. Selecting rice genotypes tolerant to zinc deficiency and sodicity stresses. I. Differences in zinc, iron, manganese, copper, phosphorus concentrations, and phosphorus/zinc ratio in their leaves. Journal of Plant Nutrition, 25, 457-473.

QUIJANO-GUERTA, C., KIRK, G. J. D., PORTUGAL, A. M., BARTOLOME, V. I. & MCLAREN, G. C. 2002. Tolerance of rice germplasm to zinc deficiency. Field Crops Research, 76, 123-130.

RADHAKRISHNAIAH, K., SURESH, A. & SIVARAMAKRISHNA, B. 1993. Effect of sublethal concentration of mercury and zinc on the energetics of a freshwater fish Cyprinus carpio (Linnaeus). Acta Biol Hung, 44, 375-85.

RAMESH, S. A., SHIN, R., EIDE, D. J. & SCHACHTMAN, D. P. 2003. Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiology, 133, 126-134.

RANI, A., KUMAR, A., LAL, A. & PANT, M. 2014. Cellular mechanisms of cadmiuminduced toxicity: a review. Int J Environ Health Res, 24, 378-99.

RAO, K. V. M. & SRESTY, T. V. S. 2000. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Science, 157, 113-128.

RAY, S., DUTTA, S., HALDER, J. & RAY, M. 1994. Inhibition of Electron Flow-through Complex I of the Mitochondrial Respiratory-Chain of Ehrlich Ascites-Carcinoma Cells by Methylglyoxal. Biochemical Journal, 303, 69-72.

REISENAUER, H. M. 1960. Cobalt in Nitrogen Fixation by a Legume. Nature, 186, 375-376.

RIBERA, I. L. & PUIGDOMENECH, P. 1999. Structure, organization and expression of the eukaryotic translation initiation factor 5, eIF-5, gene in Zea mays. Gene, 240, 355-359.

RODRIGUEZ, I. B. & HO, T. Y. 2014. Diel nitrogen fixation pattern of Trichodesmium: the interactive control of light and Ni. Sci Rep, 4, 4445.

SALT, D. E., BAXTER, I. & LAHNER, B. 2008. Ionomics and the study of the plant ionome. Annu Rev Plant Biol, 59, 709-33.

SANCHEZ-RODRIGUEZ, E., RUBIO-WILHELMI, M. D., CERVILLA, L. M., BLASCO, B., RIOS, J. J., LEYVA, R., ROMERO, L. & RUIZ, J. M. 2010. Study of the ionome and uptake fluxes in cherry tomato plants under moderate water stress conditions. Plant and Soil, 335, 339-347.

SASAKI, A., YAMAJI, N. & MA, J. F. 2014. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. J Exp Bot, 65, 6013- 21.

SASAKI, A., YAMAJI, N., MITANI-UENO, N., KASHINO, M. & MA, J. F. 2015. A nodelocalized transporter OsZIP3 is responsible for the preferential distribution of Zn to developing tissues in rice. Plant Journal, 84, 374-384.

SASAKI, A., YAMAJI, N., YOKOSHO, K. & MA, J. F. 2012. Nramp5 Is a Major Transporter Responsible for Manganese and Cadmium Uptake in Rice. Plant Cell, 24, 2155-2167.

SCHAAF, G., HONSBEIN, A., MEDA, A. R., KIRCHNER, S., WIPF, D. & VON WIREN, N. 2006. AtIREG2 encodes a tonoplast transport protein involved in irondependent nickel detoxification in Arabidopsis thaliana roots. J Biol Chem, 281, 25532-40.

SEREGIN, I. V. & IVANOV, V. B. 2001. Physiological aspects of cadmium and lead toxic effects on higher plants. Russian Journal of Plant Physiology, 48, 523-544.

SEREGIN, I. V. & KOZHEVNIKOVA, A. D. 2006. Physiological role of nickel and its toxic effects on higher plants. Russian Journal of Plant Physiology, 53, 257-277.

SHEORAN, I. S., SINGAL, H. R. & SINGH, R. 1990. Effect of Cadmium and Nickel on Photosynthesis and the Enzymes of the Photosynthetic Carbon-Reduction Cycle in Pigeonpea (Cajanus-Cajan L). Photosynthesis Research, 23, 345-351.

SHIMADA, H., YASUTAKE, A., HIRASHIMA, T., TAKAMURE, Y., KITANO, T., WAALKES, M. P. & IMAMURA, Y. 2008. Strain difference of cadmium accumulation by liver slices of inbred Wistar-Imamichi and Fischer 344 rats. Toxicol In Vitro, 22, 338-43.

SINGH, B., NATESAN, S. K. A., SINGH, B. K. & USHA, K. 2005. Improving zinc efficiency of cereals under zinc deficiency. Current Science, 88, 36-44.

SIRKO, A. & BRODZIK, R. 2000. Plant ureases: roles and regulation. Acta Biochim Pol, 47, 1189-95.

SMITH, A. T., SMITH, K. P. & ROSENZWEIG, A. C. 2014. Diversity of the metaltransporting P1B-type ATPases. J Biol Inorg Chem, 19, 947-60.

STAHL, A., MOBERG, P., YTTERBERG, J., PANFILOV, O., VON LOWENHIELM, H. B., NILSSON, F. & GLASER, E. 2002. Isolation and identification of a novel mitochondrial metalloprotease (PreP) that degrades targeting presequences in plants. Journal of Biological Chemistry, 277, 41931-41939.

SUN, L. N., ZHANG, Y. H., SUN, T. H., GONG, Z. Q., LIN, X. & LI, H. B. 2006. Temporal-spatial distribution and variability of cadmium contamination in soils in Shenyang Zhangshi irrigation area, China. Journal of Environmental Sciences, 18, 1241-1246.

SUNDERMAN, F. W., HOPFER, S. M., SWEENEY, K. R., MARCUS, A. H., MOST, B.M. & CREASON, J. 1989. Nickel Absorption and Kinetics in Human Volunteers. Proceedings of the Society for Experimental Biology and Medicine, 191, 5-11.

SUZUKI, M., BASHIR, K., INOUE, H., TAKAHASHI, M., NAKANISHI, H. & NISHIZAWA, N. K. 2012. Accumulation of starch in Zn-deficient rice. Rice, 5.

TAKAHASHI, R., ISHIMARU, Y., SENOURA, T., SHIMO, H., ISHIKAWA, S., ARAO, T., NAKANISHI, H. & NISHIZAWA, N. K. 2011. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot, 62, 4843-50.

TAKAHASHI, R., ISHIMARU, Y., SHIMO, H., OGO, Y., SENOURA, T., NISHIZAWA, N. K. & NAKANISHI, H. 2012. The OsHMA2 transporter is involved in root-toshoot translocation of Zn and Cd in rice. Plant Cell Environ, 35, 1948-57.

TAKAHASHI-INIGUEZ, T., GARCIA-HERNANDEZ, E., ARREGUIN-ESPINOSA, R. & FLORES, M. E. 2012. Role of vitamin B12 on methylmalonyl-CoA mutase activity. J Zhejiang Univ Sci B, 13, 423-37.

TAKATSUJI, H. 1998. Zinc-finger transcription factors in plants. Cellular and Molecular Life Sciences, 54, 582-596.

TALKE, I. N., HANIKENNE, M. & KRAMER, U. 2006. Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiology, 142, 148-167.

TAN, L., ZHU, Y., FAN, T., PENG, C., WANG, J., SUN, L. & CHEN, C. 2019. OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice. Biochem Biophys Res Commun, 512, 112-118.

TANAKA, N., NISHIDA, S., KAMIYA, T. & FUJIWARA, T. 2016. Large-scale profiling of brown rice ionome in an ethyl methanesulphonate-mutagenized hitomebore population and identification of high- and low-cadmium lines. Plant and Soil, 407, 109-117.

TIAN, H., BAXTER, I. R., LAHNER, B., REINDERS, A., SALT, D. E. & WARD, J. M. 2010. Arabidopsis NPCC6/NaKR1 Is a Phloem Mobile Metal Binding Protein Necessary for Phloem Function and Root Meristem Maintenance. Plant Cell, 22, 3963-3979.

TIWARI, M., SHARMA, D., DWIVEDI, S., SINGH, M., TRIPATHI, R. D. & TRIVEDI, P. K. 2014. Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance. Plant Cell Environ, 37, 140-52.

TRIPATHY, B. C., BHATIA, B. & MOHANTY, P. 1981. Inactivation of Chloroplast Photosynthetic Electron-Transport Activity by Ni-2+. Biochimica Et Biophysica Acta, 638, 217-224.

UENO, D., YAMAJI, N., KONO, I., HUANG, C. F., ANDO, T., YANO, M. & MA, J. F. 2010. Gene limiting cadmium accumulation in rice. Proceedings of the National Academy of Sciences of the United States of America, 107, 16500-16505.

VALLEE, B. L. & AULD, D. S. 1989. Short and long spacer sequences and other structural features of zinc binding sites in zinc enzymes. FEBS Lett, 257, 138-40.

VALLEE, B. L. & FALCHUK, K. H. 1993. The Biochemical Basis of Zinc Physiology. Physiological Reviews, 73, 79-118.

VAN DE MORTEL, J. E., VILLANUEVA, L. A., SCHAT, H., KWEKKEBOOM, J., COUGHLAN, S., MOERLAND, P. D., VAN THEMAAT, E. V. L., KOORNNEEF, M. & AARTS, M. G. M. 2006. Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiology, 142, 1127-1147.

VANBREEMEN, N. & CASTRO, R. U. 1980. Zinc-Deficiency in Wetland Rice Along a Toposequence of Hydromorphic Soils in the Philippines .2. Cropping Experiment. Plant and Soil, 57, 215-221.

VEERANJANEYULU, K. & DAS, V. S. R. 1982. Intrachloroplast Localization of Zn-65 and Ni-63 in a Zn-Tolerant Plant, Ocimum-Basilicum Benth. Journal of Experimental Botany, 33, 1161-1165.

VERRET, F., GRAVOT, A., AUROY, P., LEONHARDT, N., DAVID, P., NUSSAUME, L., VAVASSEUR, A. & RICHAUD, P. 2004. Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. Febs Letters, 576, 306-312.

VERT, G., GROTZ, N., DEDALDECHAMP, F., GAYMARD, F., GUERINOT, M. L., BRIAT, J. F. & CURIE, C. 2002. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell, 14, 1223-1233.

VIDAL, S. M., MALO, D., VOGAN, K., SKAMENE, E. & GROS, P. 1993a. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell, 73, 469-85.

VIDAL, S. M., MALO, D., VOGAN, K., SKAMENE, E. & GROS, P. 1993b. NaturalResistance to Infection with Intracellular Parasites - Isolation of a Candidate for Bcg. Cell, 73, 469-485.

WACHSMAN, G., MODLISZEWSKI, J. L., VALDES, M. & BENFEY, P. N. 2017. A SIMPLE Pipeline for Mapping Point Mutations. Plant Physiol, 174, 1307-1313.

WALKER, C. D., GRAHAM, R. D., MADISON, J. T., CARY, E. E. & WELCH, R. M. 1985. Effects of Ni Deficiency on Some Nitrogen Metabolites in Cowpeas (Vigna-Unguiculata-L Walp). Plant Physiology, 79, 474-479.

WANG, K., ZHOU, B., KUO, Y. M., ZEMANSKY, J. & GITSCHIER, J. 2002. A novel member of a zinc transporter family is defective in acrodermatitis enteropathica. American Journal of Human Genetics, 71, 66-73.

WATANABE, M., HENMI, K., OGAWA, K. & SUZUKI, T. 2003. Cadmium-dependent generation of reactive oxygen species and mitochondrial DNA breaks in photosynthetic and non-photosynthetic strains of Euglena gracilis. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 134, 227-234.

WATSON, R. J., HEYS, R., MARTIN, T. & SAVARD, M. 2001. Sinorhizobium meliloti cells require biotin and either cobalt or methionine for growth. Applied and Environmental Microbiology, 67, 3767-3770.

WEBER, M., HARADA, E., VESS, C., VON ROEPENACK-LAHAYE, E. & CLEMENS, S. 2004. Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant Journal, 37, 269-281.

WHITE, P. J., BROADLEY, M. R., THOMPSON, J. A., MCNICOL, J. W., CRAWLEY, M. J., POULTON, P. R. & JOHNSTON, A. E. 2012. Testing the distinctness of shoot ionomes of angiosperm families using the Rothamsted Park Grass Continuous Hay Experiment. New Phytologist, 196, 101-109.

WILLIAMS, L. E. & MILLS, R. F. 2005. P-1B-ATPases - an ancient family of transition metal pumps with diverse functions in plants. Trends in Plant Science, 10, 491- 502.

WISSUWA, M., ISMAIL, A. M. & YANAGIHARA, S. 2006a. Effects of zinc deficiency on rice growth and genetic factors contributing to tolerance. Plant Physiology, 142, 731-741.

WISSUWA, M., ISMAIL, A. M. & YANAGIHARA, S. 2006b. Effects of zinc deficiency on rice growth and genetic factors contributing to tolerance. Plant Physiol, 142, 731-41.

WU, B., ZHANG, B. C., DAI, Y., ZHANG, L., SHANG-GUAN, K. K., PENG, Y. G., ZHOU, Y. H. & ZHU, Z. 2012. Brittle Culm15 Encodes a Membrane-Associated Chitinase-Like Protein Required for Cellulose Biosynthesis in Rice. Plant Physiology, 159, 1440-1452.

WU, D. Z., SHEN, Q. F., CAI, S. G., CHEN, Z. H., DAI, F. & ZHANG, G. P. 2013. Ionomic Responses and Correlations Between Elements and Metabolites Under Salt Stress in Wild and Cultivated Barley. Plant and Cell Physiology, 54, 1976-1988.

XIA, J. X., YAMAJI, N., KASAI, T. & MA, J. F. 2010. Plasma membrane-localized transporter for aluminum in rice. Proceedings of the National Academy of Sciences of the United States of America, 107, 18381-18385.

YAMAJI, N., HUANG, C. F., NAGAO, S., YANO, M., SATO, Y., NAGAMURA, Y. & MA, J. F. 2009. A Zinc Finger Transcription Factor ART1 Regulates Multiple Genes Implicated in Aluminum Tolerance in Rice. Plant Cell, 21, 3339-3349.

YAMAJI, N., XIA, J. X., MITANI-UENO, N., YOKOSHO, K. & MA, J. F. 2013. Preferential Delivery of Zinc to Developing Tissues in Rice Is Mediated by PType Heavy Metal ATPase OsHMA2. Plant Physiology, 162, 927-939.

YANG, X., HUANG, J., JIANG, Y. & ZHANG, H. S. 2009. Cloning and functional identification of two members of the ZIP (Zrt, Irt-like protein) gene family in rice (Oryza sativa L.). Mol Biol Rep, 36, 281-7.

YOKOSHO, K., YAMAJI, N., MITANI-UENO, N., SHEN, R. F. & MA, J. F. 2016. An Aluminum-Inducible IREG Gene is Required for Internal Detoxification of Aluminum in Buckwheat. Plant and Cell Physiology, 57, 1169-1178.

ZENG, Z. M., XIONG, F. J., YU, X. H., GONG, X. P., LUO, J. T., JIANG, Y. D., KUANG, H. C., GAO, B. J., NIU, X. L. & LIU, Y. S. 2016. Overexpression of a glyoxalase gene, OsGly I, improves abiotic stress tolerance and grain yield in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 109, 62-71.

ZHANG, M., PINSON, S. R. M., TARPLEY, L., HUANG, X. Y., LAHNER, B., YAKUBOVA, E., BAXTER, I., GUERINOT, M. L. & SALT, D. E. 2014. Mapping

and validation of quantitative trait loci associated with concentrations of 16 elements in unmilled rice grain. Theoretical and Applied Genetics, 127, 137-165.

ZHANG, Y., SU, J. B., DUAN, S., AO, Y., DAI, J. R., LIU, J., WANG, P., LI, Y. G., LIU, B., FENG, D. R., WANG, J. F. & WANG, H. B. 2011. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods, 7.

ZHANG, Y., XU, Y. H., YI, H. Y. & GONG, J. M. 2012. Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice. Plant Journal, 72, 400-410.

ZHANG, Z. L., XIE, Z., ZOU, X. L., CASARETTO, J., HO, T. H. D. & SHEN, Q. X. J. 2004. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiology, 134, 1500-1513.

ZHU, Y., LIU, L., SHEN, L. S. & YU, H. 2016. NaKR1 regulates long-distance movement of FLOWERING LOCUS T in Arabidopsis. Nature Plants, 2.

ZOBIOLE, L. H. S., OLIVEIRA, R. S., KREMER, R. J., CONSTANTIN, J., YAMADA, T., CASTRO, C., OLIVEIRA, F. A. & OLIVEIRA, A. 2010. Effect of glyphosate on symbiotic N-2 fixation and nickel concentration in glyphosate-resistant soybeans. Applied Soil Ecology, 44, 176-180.

ZONIA, L. E., STEBBINS, N. E. & POLACCO, J. C. 1995. Essential role of urease in germination of nitrogen-limited Arabidopsis thaliana seeds. Plant Physiol, 107, 1097-103.

参考文献をもっと見る