リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「薬剤関連顎骨壊死の発症に対するフルバスタチンの予防的効果の検証」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

薬剤関連顎骨壊死の発症に対するフルバスタチンの予防的効果の検証

足立, 奈織美 ADACHI, Naomi アダチ, ナオミ 九州大学

2020.09.25

概要

Objectives: Medication-related osteonecrosis of the jaw (MRONJ) occurs in patients taking bisphosphonates or denosumab, and mainly relates to surgical triggers such as tooth extraction. To date, MRONJ is reported to be unresponsive to surgical or medical treatment.

HMG-CoA reductase inhibitors, statins, are widely used for hyperlipidemia patients. Statins have also been reported to have many functions and promote both soft and hard tissue healings of tooth extraction socket. In the present study, the possibility of the local application of fluvastatin (FS) at the tooth extraction site for the prevention of the development of MRONJ was investigated.

Methods: Zoledronate and dexamethasone were injected subcutaneously three times a week to rats, until euthanasia to establish MRONJ model. Two weeks after the start of subcutaneous injections, right maxillary first molar was extracted, and FS was injected in the proximity of the extraction socket. Two weeks after the tooth extraction, all animals were euthanized and extraction sockets were analyzed histomorphometrically.

Results: Both epithelial discontinuity and necrotic bone were indicated in MRONJ group, however, in FS group the epithelial continuity was recovered and the area of necrotic bone was reduced. µ-CT findings indicated that new bone formation was observed especially in FS group.

Conclusions: The present findings suggest that the concurrent tooth extraction with single and local injection of FS prevents the development of MRONJ.

この論文で使われている画像

参考文献

1. Cremers, S., Drake, M. T., Ebetino, F. H., Bilezikian, J. P. & Russell, R. G. G. Pharmacology of bisphosphonates. Br. J. Clin. Pharmacol. 85, 1052–1062, https://doi.org/10.1111/bcp.13867 (2019).

2. Marx, R. E. Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: A growing epidemic [1]. J. Oral Maxillofac. Surg. 61, 1115–1117, https://doi.org/10.1016/S0278-2391(03)00720-1 (2003).

3. Ruggiero, S. L., Mehrotra, B., Rosenberg, T. J. & Engroff, S. L. Osteonecrosis of the Jaws Associated with the Use of Bisphosphonates: A Review of 63 Cases. J. Oral Maxillofac. Surg. 62, 527–534, https://doi.org/10.1016/j.joms.2004.02.004 (2004).

4. Migliorati, C. A., Schubert, M. M., Peterson, D. E. & Seneda, L. M. Bisphosphonate-associated osteonecrosis of mandibular and maxillary bone - An emerging oral complication of supportive cancer therapy. Cancer 104, 83–93, https://doi.org/10.1002/ cncr.21130 (2005).

5. Bagan, J. V. et al. Jaw osteonecrosis associated with bisphosphonates: multiple exposed areas and its relationship to teeth extractions. Study of 20 cases. Oral Oncol. 42, 327–329, https://doi.org/10.1016/j.oraloncology.2005.08.001 (2006).

6. Aghaloo, T. L., Felsenfeld, A. L. & Tetradis, S. Osteonecrosis of the Jaw in a Patient on Denosumab. J. Oral Maxillofac. Surg. 68, 959–963, https://doi.org/10.1016/j.joms.2009.10.010 (2010).

7. Taylor, K. H., Middlefell, L. S. & Mizen, K. D. Osteonecrosis of the jaws induced by anti-RANK ligand therapy. Br. J. Oral Maxillofac. Surg. 48, 221–223, https://doi.org/10.1016/j.bjoms.2009.08.030 (2010).

8. Ruggiero, S. L. et al. American Association of Oral and Maxillofacial Surgeons Position Paper on Medication-Related Osteonecrosis of the Jaw-2014 Update. J. Oral Maxillofac. Surg. 72, 1938–1956, https://doi.org/10.1016/j.joms.2014.04.031 (2014).

9. Khan, A. A. et al. Case-Based Review of Osteonecrosis of the Jaw (ONJ) and Application of the International Recommendations for Management From the International Task Force on ONJ. J. Clin. Densitom. 20, 8–24, https://doi.org/10.1016/j.jocd.2016.09.005 (2017).

10. Ristow, O. et al. Is the conservative non-surgical management of medication-related osteonecrosis of the jaw an appropriate treatment option for early stages? A long-term single-center cohort study. J. Craniomaxillofac. Surg. 47, 491–499, https://doi. org/10.1016/j.jcms.2018.12.014 (2019).

11. Melea, P. I. et al. Conservative treatment of bisphosphonate-related osteonecrosis of the jaw in multiple myeloma patients. Int J Dent 2014, 427273, https://doi.org/10.1155/2014/427273 (2014).

12. Bagan, J. et al. Medication-related osteonecrosis of the jaw associated with bisphosphonates and denosumab in osteoporosis. Oral Dis. 22, 324–329, https://doi.org/10.1111/odi.12447 (2016).

13. Kakehashi, H. et al. Administration of teriparatide improves the symptoms of advanced bisphosphonate-related osteonecrosis of the jaw: preliminary findings. Int. J. Oral Maxillofac. Surg. 44, 1558–1564, https://doi.org/10.1016/j.ijom.2015.07.018 (2015).

14. Jung, J. et al. Short-Term Teriparatide and Recombinant Human Bone Morphogenetic Protein-2 for Regenerative Approach to Medication-Related Osteonecrosis of the Jaw: A Preliminary Study. J. Bone Miner. Res. 32, 2445–2452, https://doi.org/10.1002/ jbmr.3237 (2017).

15. Heggendorn, F. L. et al. Bisphosphonate-related osteonecrosis of the jaws: Report of a case using conservative protocol. Spec. Care Dentist. 36, 43–47, https://doi.org/10.1111/scd.12143 (2016).

16. Mauceri, R. et al. Conservative Surgical Treatment of Bisphosphonate-Related Osteonecrosis of the Jaw with Er,Cr:YSGG Laser and Platelet-Rich Plasma: A Longitudinal Study. Biomed Res Int 2018, 3982540, https://doi.org/10.1155/2018/3982540 (2018).

17. Freiberger, J. J. et al. What is the role of hyperbaric oxygen in the management of bisphosphonate-related osteonecrosis of the jaw: A randomized controlled trial of hyperbaric oxygen as an adjunct to surgery and antibiotics. J. Oral Maxillofac. Surg. 70, 1573–1583, https://doi.org/10.1016/j.joms.2012.04.001 (2012).

18. Curi, M. M. et al. Bisphosphonate-Related Osteonecrosis of the Jaws-An Initial Case Series Report of Treatment Combining Partial Bone Resection and Autologous Platelet-Rich Plasma. J. Oral Maxillofac. Surg. 69, 2465–2472, https://doi.org/10.1016/j. joms.2011.02.078 (2011).

19. Lesclous, P. et al. Bisphosphonate-associated osteonecrosis of the jaw: A key role of inflammation? Bone 45, 843–852, https://doi. org/10.1016/j.bone.2009.07.011 (2009).

20. Zirk, M. et al. Microbial diversity in infections of patients with medication-related osteonecrosis of the jaw. Clin. Oral Investig. 23, 2143–2151, https://doi.org/10.1007/s00784-018-2655-z (2019).

21. Allen, M. R. & Burr, D. B. Mandible Matrix Necrosis in Beagle Dogs After 3 Years of Daily Oral Bisphosphonate Treatment. J. Oral Maxillofac. Surg. 66, 987–994, https://doi.org/10.1016/j.joms.2008.01.038 (2008).

22. Fournier, P. et al. Bisphosphonates inhibit angiogenesis in vitro and testosterone-stimulated vascular regrowth in the ventral prostate in castrated rats. Cancer Res. 62, 6538–6544 (2002).

23. Santini, D. et al. Zoledronic acid induces significant and long-lasting modifications of circulating angiogenic factors in cancer patients. Clin. Cancer Res. 9, 2893–2897 (2003).

24. Gkouveris, I. et al. Vasculature submucosal changes at early stages of osteonecrosis of the jaw (ONJ). Bone 123, 234–245, https://doi. org/10.1016/j.bone.2019.03.031 (2019).

25. Ravosa, M. J., Ning, J., Liu, Y. & Stack, M. S. Bisphosphonate effects on the behaviour of oral epithelial cells and oral fibroblasts. Arch. Oral Biol. 56, 491–498, https://doi.org/10.1016/j.archoralbio.2010.11.003 (2011).

26. Soydan, S. S. et al. Effects of alendronate and pamidronate on apoptosis and cell proliferation in cultured primary human gingival fibroblasts. Hum. Exp. Toxicol. 34, 1073–1082, https://doi.org/10.1177/0960327115569808 (2015).

27. Zhang, Q. et al. IL-17-mediated M1/M2 macrophage alteration contributes to pathogenesis of bisphosphonate-related osteonecrosis of the jaws. Clin. Cancer Res. 19, 3176–3188, https://doi.org/10.1158/1078-0432.Ccr-13-0042 (2013).

28. Zhu, W. et al. Zoledronic acid promotes TLR-4-mediated M1 macrophage polarization in bisphosphonate-related osteonecrosis of the jaw. FASEB J. 33, 5208–5219, https://doi.org/10.1096/fj.201801791RR (2019).

29. Mundy, G. et al. Stimulation of bone formation in vitro and in rodents by statins. Science 286, 1946–1949, https://doi.org/10.1126/ science.286.5446.1946 (1999).

30. Ayukawa, Y., Okamura, A. & Koyano, K. Simvastatin promotes osteogenesis around titanium implants. Clin. Oral Implants Res. 15, 346–350, https://doi.org/10.1046/j.1600-0501.2003.01015.x (2004).

31. Sakoda, K. et al. Simvastatin decreases IL-6 and IL-8 production in epithelial cells. J. Dent. Res. 85, 520–523, https://doi. org/10.1177/154405910608500608 (2006).

32. Hassan, H. M., Al-Gayyar, M. M. H., El-Gayar, A. M. & Ibrahim, T. M. Effect of simvastatin on inflammatory cytokines balance in air pouch granuloma model. Inflammation and Allergy - Drug Targets 13, 74–79, https://doi.org/10.2174/187152811266613123001 2026 (2014).

33. Jerwood, S. & Cohen, J. Unexpected antimicrobial effect of statins. J. Antimicrob. Chemother. 61, 362–364, https://doi.org/10.1093/ jac/dkm496 (2008).

34. Ko, H. H. T., Lareu, R. R., Dix, B. R. & Hughes, J. D. In vitro antibacterial effects of statins against bacterial pathogens causing skin infections. Eur. J. Clin. Microbiol. Infect. Dis. 37, 1125–1135, https://doi.org/10.1007/s10096-018-3227-5 (2018).

35. Altieri, D. C. Statins’ benefits begin to sprout. J. Clin. Invest. 108, 365–366, https://doi.org/10.1172/jci13556 (2001).

36. Zhang, Y. et al. Simvastatin augments the efficacy of therapeutic angiogenesis induced by bone marrow-derived mesenchymal stem cells in a murine model of hindlimb ischemia. Mol. Biol. Rep. 39, 285–293, https://doi.org/10.1007/s11033-011-0737-y (2012).

37. Yasunami, N. et al. Acceleration of hard and soft tissue healing in the oral cavity by a single transmucosal injection of fluvastatin- impregnated poly (lactic-co-glycolic acid) microspheres. An in vitro and rodent in vivo study. Biomed. Mater. 11, 015001, https://doi. org/10.1088/1748-6041/11/1/015001 (2015).

38. The ARRIVE Guidelines: Animal Research: Reporting of In Vivo Experiments, https://www.nc3rs.org.uk/sites/default/files/documents/ Guidelines/NC3Rs%20ARRIVE%20Guidelines%202013.pdf.

39. Kaibuchi, N., Iwata, T., Yamato, M., Okano, T. & Ando, T. Multipotent mesenchymal stromal cell sheet therapy for bisphosphonate- related osteonecrosis of the jaw in a rat model. Acta Biomater. 42, 400–410, https://doi.org/10.1016/j.actbio.2016.06.022 (2016).

40. Kuroshima, S., Entezami, P., McCauley, L. K. & Yamashita, J. Early effects of parathyroid hormone on bisphosphonate/steroid- associated compromised osseous wound healing. Osteoporos. Int. 25, 1141–1150, https://doi.org/10.1007/s00198-013-2570-8 (2014).

41. Araújo, M. G., Wennström, J. L. & Lindhe, J. Modeling of the buccal and lingual bone walls of fresh extraction sites following implant installation. Clin. Oral Implants Res. 17, 606–614, https://doi.org/10.1111/j.1600-0501.2006.01315.x (2006).

42. Ogata, K. et al. Evaluation of the therapeutic effects of conditioned media from mesenchymal stem cells in a rat bisphosphonate- related osteonecrosis of the jaw-like model. Bone 74, 95–105, https://doi.org/10.1016/j.bone.2015.01.011 (2015).

43. Saad, F. et al. Incidence, risk factors, and outcomes of osteonecrosis of the jaw: Integrated analysis from three blinded active- controlled phase III trials in cancer patients with bone metastases. Ann. Oncol. 23, 1341–1347, https://doi.org/10.1093/annonc/ mdr435 (2012).

44. Aghaloo, T. L. et al. RANKL inhibitors induce osteonecrosis of the jaw in mice with periapical disease. J. Bone Miner. Res. 29, 843–854, https://doi.org/10.1002/jbmr.2097 (2014).

45. Vukelic, S. et al. Farnesyl pyrophosphate inhibits epithelialization and wound healing through the glucocorticoid receptor. J. Biol. Chem. 285, 1980–1988, https://doi.org/10.1074/jbc.M109.016741 (2010).

46. Kureishi, Y. et al. The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat. Med. 6, 1004–1010, https://doi.org/10.1038/79510 (2000).

47. Greenwood, J., Steinman, L. & Zamvil, S. S. Statin therapy and autoimmune disease: From protein prenylation to immunomodulation. Nature Reviews Immunology 6, 358–370, https://doi.org/10.1038/nri1839 (2006).

48. Thangamani, S. et al. Exploring simvastatin, an antihyperlipidemic drug, as a potential topical antibacterial agent. Sci. Rep. 5, 16407, https://doi.org/10.1038/srep16407 (2015).

49. Gupta, M. & Kumar, A. Comparison of Minimum Inhibitory Concentration (MIC) value of statin drugs: A Systematic Review. Anti- Infective Agents 17, 4–19, https://doi.org/10.2174/2211352516666180629124433 (2018).

50. Jain, M. K. & Ridker, P. M. Anti-inflammatory effects of statins: Clinical evidence and basic mechanisms. Nature Reviews Drug Discovery 4, 977–987, https://doi.org/10.1038/nrd1901 (2005).

51. Li, X., Cui, Q., Kao, C., Wang, G. J. & Balian, G. Lovastatin inhibits adipogenic and stimulates osteogenic differentiation by suppressing PPARgamma2 and increasing Cbfa1/Runx2 expression in bone marrow mesenchymal cell cultures. Bone 33, 652–659, https://doi.org/10.1016/s8756-3282(03)00239-4 (2003).

52. Ohnaka, K. et al. Pitavastatin enhanced BMP-2 and osteocalcin expression by inhibition of Rho-associated kinase in human osteoblasts. Biochem. Biophys. Res. Commun. 287, 337–342, https://doi.org/10.1006/bbrc.2001.5597 (2001).

53. Oryan, A., Kamali, A. & Moshiri, A. Potential mechanisms and applications of statins on osteogenesis: Current modalities, conflicts and future directions. J. Control. Release 215, 12–24, https://doi.org/10.1016/j.jconrel.2015.07.022 (2015).

54. Galus, R., Wlodarski, P. K. & Wlodarski, K. H. Fluvastatin increases heterotopically induced ossicles in mice. Clin. Exp. Pharmacol. Physiol. 33, 388–390, https://doi.org/10.1111/j.1440-1681.2006.04380.x (2006).

55. Galus, R., Wlodarski, P. & Wlodarski, K. Influence of fluvastatin on bone formation induced by demineralized bone matrix in mice. Pharmacol. Rep. 58, 443–447 (2006).

56. Kuroshima, S. & Yamashita, J. Chemotherapeutic and antiresorptive combination therapy suppressed lymphangiogenesis and induced osteonecrosis of the jaw-like lesions in mice. Bone 56, 101–109, https://doi.org/10.1016/j.bone.2013.05.013 (2013).

57. García, M. J., Reinoso, R. F., Sánchez Navarro, A. & Prous, J. R. Clinical pharmacokinetics of statins. Methods Find. Exp. Clin. Pharmacol. 25, 457–481 (2003).

58. Ayukawa, Y. et al. Simvastatin enhances bone formation around titanium implants in rat tibiae. J. Oral Rehabil. 37, 123–130, https:// doi.org/10.1111/j.1365-2842.2009.02011.x (2010).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る