リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「柔軟で強誘電性の基板を使用した磁性薄膜の磁気特性の変調」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

柔軟で強誘電性の基板を使用した磁性薄膜の磁気特性の変調

アマニ, ハルビー ELSAYED ABDEL-HALIM GOMAA HARBY AMANY 九州大学

2022.03.23

概要

Electric-field manipulation of magnetic properties in multiferroic heterostructures is considered an optimistic way of authorizing memory and magnetic microwave devices with ultralow power consumption. Recently, Multiferroic materials which possess both ferroelectricity (FE) and ferromagnetis m (FM) provide a simple and effective way to realize electric field control of magnetis m through the converse ME coupling effect, i.e electric field control of magnetism without the need for magnetic fields.
In this Ph.D. thesis two main topics were discussed
1- The magnetic and magnetostrictive properties of FeSiB Film on two different substates Fz:Si and Polymide.
2- The magnetoelectric properties of the multiferroic heterostructure FeSiB/PMN-PT.

 In order to study the magnetoelectric properties of a FM/ FE multife rro ic hete rostructure , we have chosen Fe SiB as a FM layer. Gene rally, Amorphous Fe SiB thin films presenting magnetostriction have been investigated for decades for energy and sensors applications. They are very soft magnetic films, with high magnetization saturation.
For better understand of our chosen FM layer properties, we first studied the statics and dynamics magnetostrictive properties of the amorphous Fe 72Si14B14films with different th icknesses on two different substates Fz:Si and Polyimide(with different curvatures)to confirm the magnetic and magnetostrictive properties of FeSiB. Then, we studied the magnetoelectric (ME) properties of the multiferroic heterostructure by depositing the FM magnetostictive Fe 72Si14B14 amorphous film with a wide range of thicknesses (10,20,50 and 100 nm) on the top of piezoelectric substrate PMN-0.3PTby Dc sputtering technique. After that Ferroelectric, magnetic and ME properties were studied through static and dynamics measurements.

 Obtaining the magnetoelectric coupling in multiferroic heterostructures mainly focuses on three mechanisms including strain mediated, charge carriers, and exchange bias. The most investigated and well-known mechanis m is the strain mediated, in which the electric field produces strains inside FE layer which t ransferred to the FM layer by convert magnetostrictive effect, resulting in high electric field tunability of the magnetic properties of the examined structures.
On the other hand, in the charge mediated mechanism, electric field induce charge
mediated coupling across FM/FE interfaces also adjusts the charge carrier concentrations at the FM layers via an accumulation or depletion process depending on the direction of FE polarization. it seems that the coexistence of more than one
mechanis m that can contribute to controlling the magnetis m in multiferroic heterostructure is a good way that could lead to significantly enhanced ME coupling in multiferroic heterostructures.

 More recently, it has been reported that the charges at the magnetic-FE interface can also act as a medium that couples electric-voltages towards modulation of magnetis m, either through the electrostatic accumulation of spin-pola rized charges orby purely electronic origins, such as the interfacial orbital hybrid izat ion and the interfacial orbital reconstruction

 We obtained high, non-volatile, irrevers ible and thickness dependent changes in the magnetic properties of FeSiB films. The high Electrical tunning of the magnetic properties of our studied heterostructures were understood through stain and charge co-mediated mechanis ms, which is the interaction between two relating coupling mechanisms that are the interfacial strain and possibly the charge effects. From our results also we confirmed that, charge effects may become remarkable only when the thickness of the magnetic film and/or the heterostructure becomes small.

この論文で使われている画像

参考文献

[1] Claude Chappert, Albert Fert, and Frédéric Nguyen Van Dau. The emergence of spin electronics in data storage. Nanoscience And Technology: A Collection of Reviews from Nature Journals, pages 147–157, 2010.

[2] Andrew D Kent and Daniel C Worledge. A new spin on magnetic memories. Nature nanotechnology, 10(3):187–191, 2015.

[3] Yao Wang, Jiamian Hu, Yuanhua Lin, and Ce-Wen Nan. Multiferroic magneto- electric composite nanostructures. NPG Asia Materials, 2(2):61–68, 2010.

[4] Ming Liu, Ziyao Zhou, Tianxiang Nan, Brandon M Howe, Gail J Brown, and Nian X Sun. Voltage tuning of ferromagnetic resonance with bistable magneti- zation switching in energy-efficient magnetoelectric composites. Advanced Mate- rials, 25(10):1435–1439, 2013.

[5] Jia-Mian Hu, Zheng Li, Long-Qing Chen, and Ce-Wen Nan. High-density mag- netoresistive random access memory operating at ultralow voltage at room tem- perature. Nature communications, 2(1):1–8, 2011.

[6] Manuel Bibes and Agnès Barthélémy. Towards a magnetoelectric memory. Nature materials, 7(6):425–426, 2008.

[7] Evgeny Y Tsymbal. Electric toggling of magnets. Nature materials, 11(1):12–13, 2012. 81

[8] Jia-Mian Hu, Long-Qing Chen, and Ce-Wen Nan. Multiferroic heterostructures integrating ferroelectric and magnetic materials. Advanced materials, 28(1):15– 39, 2016.

[9] R Ramesh. N. and prospects in thin films,” nature m a. Spaldin,“Multiferroics: Progress aterials, 6:21–29, 2007.

[10] Haribabu Palneedi, Venkateswarlu Annapureddy, Shashank Priya, and Jungho Ryu. Status and perspectives of multiferroic magnetoelectric composite materi- als and applications. In Actuators, volume 5, page 9. Multidisciplinary Digital Publishing Institute, 2016.

[11] W Jahjah, J-Ph Jay, Y Le Grand, A Fessant, J Richy, Cécile Marcelot, Bénédicte Warot-Fonrose, ARE Prinsloo, CJ Sheppard, DT Dekadjevi, et al. Influence of mesoporous or parasitic bifeo 3 structural state on the magnetization reversal in multiferroic bifeo 3/ni 81 fe 19 polycrystalline bilayers. Journal of Applied Physics, 124(23):235309, 2018.

[12] Junyi Zhai, Zengping Xing, Shuxiang Dong, Jiefang Li, and Dwight Viehland. Magnetoelectric laminate composites: an overview. Journal of the American Ceramic Society, 91(2):351–358, 2008.

[13] Nicola A Spaldin and Manfred Fiebig. The renaissance of magnetoelectric mul- tiferroics. Science, 309(5733):391–392, 2005.

[14] W Eerenstein, M Wiora, JL Prieto, JF Scott, and ND Mathur. Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostruc- tures. Nature materials, 6(5):348–351, 2007.

[15] Pengdi Han, Weiling Yan, Jian Tian, Xinling Huang, and Huixin Pan. Cut direc- tions for the optimization of piezoelectric coefficients of lead magnesium niobate– lead titanate ferroelectric crystals. Applied Physics Letters, 86(5):052902, 2005.

[16] J Lou, David Reed, C Pettiford, M Liu, Pengdi Han, Shuxiang Dong, and NX Sun. Giant microwave tunability in fegab/lead magnesium niobate-lead ti- tanate multiferroic composites. Applied Physics Letters, 92(26):262502, 2008.

[17] C Thiele, K Dörr, O Bilani, J Rödel, and L Schultz. Influence of strain on the magnetization and magnetoelectric effect in la 0.7 a 0.3 mn o 3/ pmn- pt (001)(a= sr, ca). Physical Review B, 75(5):054408, 2007.

[18] Tao Wu, Alexandre Bur, Ping Zhao, Kotekar P Mohanchandra, Kin Wong, Kang L Wang, Christopher S Lynch, and Gregory P Carman. Giant electric- field-induced reversible and permanent magnetization reorientation on magne- toelectric ni/(011)[pb (mg 1/3 nb 2/3) o 3](1- x)–[pbtio 3] x heterostructure. Applied Physics Letters, 98(1):012504, 2011.

[19] Ziyao Zhou, Brandon M Howe, Ming Liu, Tianxiang Nan, Xing Chen, Krishna- murthy Mahalingam, Nian X Sun, and Gail J Brown. Interfacial charge-mediated non-volatile magnetoelectric coupling in co 0.3 fe 0.7/ba 0.6 sr 0.4 tio 3/nb: Srtio 3 multiferroic heterostructures. Scientific Reports, 5(1):1–7, 2015.

[20] Carlos AF Vaz, Jason Hoffman, Charles H Ahn, and Ramamoorthy Ramesh. Magnetoelectric coupling effects in multiferroic complex oxide composite struc- tures. Advanced materials, 22(26-27):2900–2918, 2010.

[21] Binod Paudel, Igor Vasiliev, Mahmoud Hammouri, Dmitry Karpov, Aiping Chen, Valeria Lauter, and Edwin Fohtung. Strain vs. charge mediated magnetoelec- tric coupling across the magnetic oxide/ferroelectric interfaces. RSC advances, 9(23):13033–13041, 2019.

[22] ZG Sun, H Kuramochi, M Mizuguchi, F Takano, Y Semba, and H Akinaga. Magnetic properties and domain structures of fesib thin films. Surface science, 556(1):33–38, 2004.

[23] Chikako Yokota, Kazushi Ishiyama, and Ken Ichi Arai. Comparison with film substrates of polyimide and ni for cantilevered magnetic actuators. IEEJ Trans- actions on Electrical and Electronic Engineering, 2(4):436–439, 2007.

[24] KI Arai, CS Muranaka, and M Yamaguchi. A new hybrid device using magne- tostrictive amorphous films and piezoelectric substrates. IEEE transactions on magnetics, 30(2):916–918, 1994.

[25] Jaewon Shin, Sung Hoon Kim, Yasuaki Suwa, Shuichiro Hashi, and Kazushi Ishiyama. Control of in-plane uniaxial anisotropy of fe72si14b14 magnetostric- tive thin film using a thermal expansion coefficient. Journal of Applied Physics, 111(7):07E511, 2012.

[26] SK Ghatak and A Mitra. Stress dependent magnetic properties of as-received and heat-pulse annealed amorphous fe81b13. 5si3. 5c2. Solid state communications, 68(11):997–1001, 1988.

[27] BD Cullity. Introduction to magnetic materials. addisonwesley series in metal- lurgy and materials, 1972.

[28] Nicola A Spaldin. Magnetic materials: fundamentals and applications. Cam- bridge university press, 2010.

[29] CH Ahn, KM Rabe, and J-M Triscone. Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science, 303(5657):488–491, 2004.

[30] Li Jin, Fei Li, and Shujun Zhang. Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. In Progress in Advanced Dielectrics, pages 21–104. World Scientific, 2020.

[31] AA Bokov and Z-G Ye. Recent progress in relaxor ferroelectrics with perovskite structure. Journal of materials science, 41(1):31–52, 2006.

[32] Alexei A Bokov and Zuo-Guang Ye. Dielectric relaxation in relaxor ferroelectrics. Journal of Advanced dielectrics, 2(02):1241010, 2012.

[33] C Lei, Alexei A Bokov, and Z-G Ye. Ferroelectric to relaxor crossover and dielec- tric phase diagram in the ba ti o 3–ba sn o 3 system. Journal of applied physics, 101(8):084105, 2007.

[34] Alexei A Bokov, Brian J Rodriguez, Xiaohui Zhao, Jae-Hyeon Ko, Stephen Jesse, Xifa Long, Weiguo Qu, Tae Hyun Kim, John D Budai, Anna N Morozovska, et al. Compositional disorder, polar nanoregions and dipole dynamics in pb (mg1/3nb2/3) o3-based relaxor ferroelectrics. 2011.

[35] Huaxiang Fu and Ronald E Cohen. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature, 403(6767):281–283, 2000.

[36] Manfred Fiebig. Revival of the magnetoelectric effect. Journal of physics D: applied physics, 38(8):R123, 2005

[37] Ce-Wen Nan, MI Bichurin, Shuxiang Dong, D Viehland, and G Srinivasan. Mul- tiferroic magnetoelectric composites: Historical perspective, status, and future directions. Journal of applied physics, 103(3):1, 2008.

[38] Jing Ma, Jiamian Hu, Zheng Li, and Ce-Wen Nan. Recent progress in multifer- roic magnetoelectric composites: from bulk to thin films. Advanced materials, 23(9):1062–1087, 2011.

[39] Ramaroorthy Ramesh and Nicola A Spaldin. Multiferroics: progress and prospects in thin films. Nature materials, 6(1):21–29, 2007.

[40] Carlos AF Vaz. Electric field control of magnetism in multiferroic heterostruc- tures. Journal of Physics: Condensed Matter, 24(33):333201, 2012.

[41] Nian X Sun and Gopalan Srinivasan. Voltage control of magnetism in multiferroic heterostructures and devices. In Spin, volume 2, page 1240004. World Scientific, 2012.

[42] LW Martin, SP Crane, YH Chu, MB Holcomb, M Gajek, Mark Huijben, Chan- Ho Yang, N Balke, and R Ramesh. Multiferroics and magnetoelectrics: thin films and nanostructures. Journal of Physics: Condensed Matter, 20(43):434220, 2008.

[43] Shuxiang Dong, Jinrong Cheng, JF Li, and D Viehland. Enhanced magnetoelec- tric effects in laminate composites of terfenol-d/pb (zr, ti) o 3 under resonant drive. Applied Physics Letters, 83(23):4812–4814, 2003.

[44] Ming Liu, Jing Lou, Shandong Li, and Nian X Sun. E-field control of exchange bias and deterministic magnetization switching in afm/fm/fe multiferroic het- erostructures. Advanced Functional Materials, 21(13):2593–2598, 2011.

[45] Junyi Y Zhai, Shuxiang Dong, Zengping P Xing, Junqi Gao, Jiefang F Li, and D Viehland. Tunable magnetoelectric resonance devices. Journal of Physics D: Applied Physics, 42(12):122001, 2009.

[46] Hans Schmid. Multi-ferroic magnetoelectrics. Ferroelectrics, 162(1):317–338, 1994.

[47] Daniel Khomskii. Trend: Classifying multiferroics: Mechanisms and effects. Physics, 2:20, 2009.

[48] Chengliang Lu, Menghao Wu, Lin Lin, and Jun-Ming Liu. Single-phase mul- tiferroics: new materials, phenomena, and physics. National Science Review, 6(4):653–668, 2019.

[49] JBNJ Wang, JB Neaton, H Zheng, V Nagarajan, SB Ogale, B Liu, D Viehland, V Vaithyanathan, DG Schlom, UV Waghmare, et al. Epitaxial bifeo3 multiferroic thin film heterostructures. science, 299(5613):1719–1722, 2003.

[50] T Kimura, T Goto, H Shintani, K Ishizaka, T-h Arima, and Y Tokura. Magnetic control of ferroelectric polarization. nature, 426(6962):55–58, 2003.

[51] N Hur, S Park, PA Sharma, JS Ahn, S Guha, and Sang-Wook Cheong. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature, 429(6990):392–395, 2004.

[52] J Van Suchtelen. Product properties: a new application of composite materials. Phillips Research Reports, 27:28–37, 1972.

[53] RE Newnham, DP Skinner, and LE Cross. Connectivity and piezoelectric- pyroelectric composites. Materials Research Bulletin, 13(5):525–536, 1978.

[54] Sergey Lopatin, Irina Lopatina, and Inna Lisnevskaya. Magnetoelectric pzt/ferrite composite material. Ferroelectrics, 162(1):63–68, 1994.

[55] Andre K Geim and Konstantin S Novoselov. Nanoscience and technology: a collection of reviews from nature journals. Assembly Autom, 20:11–19, 2010.

[56] KY Choi, P Lemmens, G Güntherodt, M Pattabiraman, G Rangarajan, VP Gnezdilov, G Balakrishnan, D McK Paul, and MR Lees. Raman scattering study of nd1- xsrxmno3 (x= 0.3, 0.5). Journal of Physics: Condensed Matter, 15(19):3333, 2003

[57] S Fusil, Vincent Garcia, A Barthélémy, and M Bibes. Magnetoelectric devices for spintronics. Annual Review of Materials Research, 44:91–116, 2014.

[58] Cheng Song, Bin Cui, Fan Li, Xiangjun Zhou, and Feng Pan. Recent progress in voltage control of magnetism: Materials, mechanisms, and performance. Progress in Materials Science, 87:33–82, 2017.

[59] B Cui, C Song, GY Wang, HJ Mao, F Zeng, and F Pan. Strain engineering induced interfacial self-assembly and intrinsic exchange bias in a manganite per- ovskite film. Scientific reports, 3(1):1–6, 2013.

[60] B Cui, C Song, F Li, GY Wang, HJ Mao, JJ Peng, F Zeng, and F Pan. Tuning the entanglement between orbital reconstruction and charge transfer at a film surface. Scientific reports, 4(1):1–8, 2014.

[61] B Cui, C Song, Y Sun, YY Wang, YL Zhao, F Li, GY Wang, F Zeng, and F Pan. Exchange bias field induced symmetry-breaking of magnetization rotation in two- dimension. Applied Physics Letters, 105(15):152402, 2014.

[62] Alexander J Grutter, Brian J Kirby, MT Gray, CL Flint, US Alaan, Y Suzuki, and Julie A Borchers. Electric field control of interfacial ferromagnetism in camno 3/caruo 3 heterostructures. Physical review letters, 115(4):047601, 2015.

[63] Martin Weisheit, Sebastian Fähler, Alain Marty, Yves Souche, Christiane Poinsignon, and Dominique Givord. Electric field-induced modification of mag- netism in thin-film ferromagnets. Science, 315(5810):349–351, 2007.

[64] K Shimamura, D Chiba, S Ono, S Fukami, N Ishiwata, M Kawaguchi, K Kobayashi, and T Ono. Electrical control of curie temperature in cobalt using an ionic liquid film. Applied Physics Letters, 100(12):122402, 2012.

[65] Ying-Hao Chu, Lane W Martin, Mikel B Holcomb, Martin Gajek, Shu-Jen Han, Qing He, Nina Balke, Chan-Ho Yang, Donkoun Lee, Wei Hu, et al. Electric- field control of local ferromagnetism using a magnetoelectric multiferroic. Nature materials, 7(6):478–482, 2008.

[66] SM Wu, Shane A Cybart, P Yu, MD Rossell, JX Zhang, R Ramesh, and RC Dynes. Reversible electric control of exchange bias in a multiferroic field- effect device. Nature materials, 9(9):756–761, 2010.

[67] T Zhao, A Scholl, F Zavaliche, K Lee, M Barry, A Doran, MP Cruz, YH Chu, C Ederer, NA Spaldin, et al. Electrical control of antiferromagnetic domains in multiferroic bifeo 3 films at room temperature. Nature materials, 5(10):823–829, 2006.

[68] Peter J Kelly and R Derek Arnell. Magnetron sputtering: a review of recent developments and applications. Vacuum, 56(3):159–172, 2000.

[69] Bertram Eugene Warren. X-ray Diffraction. Courier Corporation, 1990.

[70] D Lewis and DO Northwood. X-ray diffraction measurement of microstrains. Strain, 4(3):19–23, 1968.

[71] Joseph D Andrade. X-ray photoelectron spectroscopy (xps). In Surface and interfacial aspects of biomedical polymers, pages 105–195. Springer, 1985.

[72] Efrat Korin, Natalya Froumin, and Smadar Cohen. Surface analysis of nanocom- plexes by x-ray photoelectron spectroscopy (xps). ACS Biomaterials Science & Engineering, 3(6):882–889, 2017.

[73] Daniel Rugar and Paul Hansma. Atomic force microscopy. Physics today, 43(10):23–30, 1990.

[74] Ricardo Garcıa and Ruben Perez. Dynamic atomic force microscopy methods. Surface science reports, 47(6-8):197–301, 2002.

[75] Simon Foner. Vibrating sample magnetometer. Review of Scientific Instruments, 27(7):548–548, 1956.

[76] Sadhan Chandra Das, Aga Shahee, NP Lalla, and T Shripathi. A simple and low cost sawyer-tower ferro-electric loop tracer with variable frequency and compen- sation circuit. In Proceedings of the 54th DAE Solid State Physics Symposium Volume, volume 54, pages 439–440, 2009.

[77] Xinger Zhao, Zhongqiang Hu, Qu Yang, Bin Peng, Ziyao Zhou, and Ming Liu. Voltage control of ferromagnetic resonance and spin waves. Chinese Physics B, 27(9):097505, 2018.

[78] Tetsuya Osaka, Madoka Takai, Katsuyoshi Hayashi, Keishi Ohashi, Mikiko Saito, and Kazuhiko Yamada. A soft magnetic conife film with high saturation magnetic flux density and low coercivity. Nature, 392(6678):796–798, 1998.

[79] SN Piramanayagama. Applied physics reviews—focused review. JOURNAL OF APPLIED PHYSICS, 102:011301, 2007.

[80] Zhiguang Wang, Xinjun Wang, Menghui Li, Yuan Gao, Zhongqiang Hu, Tianx- iang Nan, Xianfeng Liang, Huaihao Chen, Jia Yang, Syd Cash, et al. Highly sensitive flexible magnetic sensor based on anisotropic magnetoresistance effect. Advanced Materials, 28(42):9370–9377, 2016.

[81] Denny D Tang and Yuan-Jen Lee. Magnetic memory: fundamentals and tech- nology. Cambridge University Press, 2010.

[82] John H van Vleck. On the anisotropy of cubic ferromagnetic crystals. Physical Review, 52(11):1178, 1937.

[83] Fanglin Che. Methane steam reforming over Ni-based catalysts: Using electric fields to enhance catalytic performance. Washington State University, 2016.

[84] Yi Qi and Michael C McAlpine. Nanotechnology-enabled flexible and biocompat- ible energy harvesting. Energy & Environmental Science, 3(9):1275–1285, 2010.

[85] M Gueye, BM Wague, F Zighem, M Belmeguenai, MS Gabor, T Petrisor Jr, C Tiusan, S Mercone, and D Faurie. Bending strain-tunable magnetic anisotropy in co2feal heusler thin film on kapton®. Applied Physics Letters, 105(6):062409, 2014.

[86] Xinyu Qiao, Baomin Wang, Zhenhua Tang, Yuan Shen, Huali Yang, Junling Wang, Qingfeng Zhan, Sining Mao, Xiaohong Xu, and Run-Wei Li. Tuning magnetic anisotropy of amorphous cofeb film by depositing on convex flexible substrates. AIP Advances, 6(5):056106, 2016.

[87] Yungeun Ha, Ju-Hwan Baeg, Sungkyun Park, and Young-Rae Cho. Effect of substrate roughness and film thickness on the magnetic properties of cofeb films on polymer substrate. Vacuum, page 110399, 2021.

[88] Jodi M Iwata-Harms, Guenole Jan, Huanlong Liu, Santiago Serrano-Guisan, Jian Zhu, Luc Thomas, Ru-Ying Tong, Vignesh Sundar, and Po-Kang Wang. High- temperature thermal stability driven by magnetization dilution in cofeb free lay- ers for spin-transfer-torque magnetic random access memory. Scientific reports, 8(1):1–7, 2018.

[89] Shuichiro Hashi, Daisuke Sora, and Kazushi Ishiyama. Strain and vibration sensor based on inverse magnetostriction of amorphous magnetostrictive films. IEEE Magnetics Letters, 10:1–4, 2019.

[90] Marco Coïsson, Franco Vinai, Paola Tiberto, and Federica Celegato. Magnetic properties of fesib thin films displaying stripe domains. Journal of magnetism and magnetic materials, 321(7):806–809, 2009.

[91] Hideo Ohno. A window on the future of spintronics. Nature materials, 9(12):952– 954, 2010.

[92] Wilma Eerenstein, ND Mathur, and James F Scott. Multiferroic and magneto- electric materials. nature, 442(7104):759–765, 2006.

[93] Ramaroorthy Ramesh and Nicola A Spaldin. Multiferroics: progress and prospects in thin films. Nanoscience And Technology: A Collection of Reviews from Nature Journals, pages 20–28, 2010.

[94] Eiji Saitoh. New order for magnetism. Nature, 455(7212):474–475, 2008.

[95] Jia-Mian Hu, Jing Ma, Jing Wang, Zheng Li, Yuan-Hua Lin, and CW Nan. Mag- netoelectric responses in multiferroic composite thin films. Journal of Advanced Dielectrics, 1(01):1–16, 2011.

[96] Pavel Borisov, Andreas Hochstrat, Xi Chen, Wolfgang Kleemann, and Chris- tian Binek. Magnetoelectric switching of exchange bias. Physical review letters, 94(11):117203, 2005.

[97] JT Heron, M Trassin, K Ashraf, M Gajek, Q He, SY Yang, DE Nikonov, YH Chu, S Salahuddin, and R Ramesh. Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Physical review letters, 107(21):217202, 2011.

[98] James M Rondinelli, Massimiliano Stengel, and Nicola A Spaldin. Carrier- mediated magnetoelectricity in complex oxide heterostructures. Nature nanotech- nology, 3(1):46–50, 2008.

[99] HL Meyerheim, F Klimenta, A Ernst, K Mohseni, S Ostanin, M Fechner, S Pari- har, IV Maznichenko, I Mertig, and J Kirschner. Structural secrets of multiferroic interfaces. Physical Review Letters, 106(8):087203, 2011.

[100] J-M Hu, L Shu, Z Li, Y Gao, Y Shen, YH Lin, LQ Chen, and CW Nan. Film size- dependent voltage-modulated magnetism in multiferroic heterostructures. Philo- sophical Transactions of the Royal Society A: Mathematical, Physical and Engi- neering Sciences, 372(2009):20120444, 2014.

[101] Vladimir Koval, Giuseppe Viola, and Yongqiang Tan. Biasing effects in ferroic materials. Ferroelectric Materials–Synthesis and Characterization, 2015.

[102] Dragan Damjanovic. Hysteresis in piezoelectric and ferroelectric materials. Tech- nical report, Academic Press, 2006.

[103] Seung-Eek Park and Thomas R Shrout. Ultrahigh strain and piezoelectric be- havior in relaxor based ferroelectric single crystals. Journal of applied physics, 82(4):1804–1811, 1997.

[104] HH Wu and RE Cohen. Electric-field-induced phase transition and electrocaloric effect in pmn-pt. Physical Review B, 96(5):054116, 2017.

[105] Ryusuke Hasegawa. Design and fabrication of new soft magnetic materials. Jour- nal of non-crystalline solids, 329(1-3):1–7, 2003.

[106] JR Childress, R Kergoat, O Durand, J-M George, P Galtier, J Miltat, and A Schuhl. Magnetic properties and domain structure of epitaxial (001) fe/pd superlattices. Journal of magnetism and magnetic materials, 130(1-3):13–22, 1994.

[107] O Durand, JR Childress, P Galtier, R Bisaro, and A Schuhl. Origin of the uniaxial magnetic anisotropy in fe films grown by molecular beam epitaxy. Journal of magnetism and magnetic materials, 145(1-2):111–117, 1995.

[108] Darrell G Schlom, Long-Qing Chen, Chang-Beom Eom, Karin M Rabe, Stephen K Streiffer, and Jean-Marc Triscone. Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res., 37:589–626, 2007.

[109] Ming Zheng, Takamasa Usami, and Tomoyasu Taniyama. Shear-strain-mediated large nonvolatile tuning of ferromagnetic resonance by an electric field in multi- ferroic heterostructures. NPG Asia Materials, 13(1):1–9, 2021.

[110] Yaming Zhou, Qiang Li, Fangping Zhuo, Chao Xu, Qingfeng Yan, Yiling Zhang, and Xiangcheng Chu. Domain switching and polarization fatigue in rhombohedral pin-pmn-pt and mn-doped pin-pmn-pt single crystals. Journal of the American Ceramic Society, 102(11):6668–6679, 2019.

[111] Steffen Oswald. X-ray photoelectron spectroscopy in analysis of surfaces. En- cyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, 2006.

[112] Weiwei Lin, Nicolas Vernier, Guillaume Agnus, Na Lei, Sylvain Eimer, and Dafiné Ravelosona. Interfacial charge accumulation effect on magnetic domain wall nucleation and propagation in a pt/co/pt/al2o3 structure. arXiv preprint arXiv:1201.5917, 2012.

[113] Michael Farle. Ferromagnetic resonance of ultrathin metallic layers. Reports on progress in physics, 61(7):755, 1998.

[114] Ming Liu, Ogheneyunume Obi, Jing Lou, Yajie Chen, Zhuhua Cai, Stephen Stoute, Mary Espanol, Magnum Lew, Xiaodan Situ, Kate S Ziemer, et al. Gi- ant electric field tuning of magnetic properties in multiferroic ferrite/ferroelectric heterostructures. Advanced Functional Materials, 19(11):1826–1831, 2009.

[115] Aaron L Stancik and Eric B Brauns. A simple asymmetric lineshape for fitting infrared absorption spectra. Vibrational Spectroscopy, 47(1):66–69, 2008.

[116] Yang Cheng, Aidan J Lee, Jack T Brangham, Shane P White, William T Ru- ane, P Chris Hammel, and Fengyuan Yang. Thickness and angular dependent ferromagnetic resonance of ultra-low damping co25fe75 epitaxial films. Applied Physics Letters, 113(26):262403, 2018.

[117] LAURA GREENE, TOM Lubensky, MATTHEW TIRRELL, PAUL CHAIKIN, HONG DING, KATHERINE FABER, PAULA HAMMOND, CHRISTIN HECKLE, KEVIN HEMKER, JOSEPH HEREMANS, et al. Frontiers of ma- terials research: A decadal survey. Technical report, The National Academies of Sciences, Engineering and Medicine, 2019.

[118] YT Yang, J Li, XL Peng, B Hong, XQ Wang, HL Ge, DH Wang, and YW Du. Surface-effect enhanced magneto-electric coupling in fept/pmn-pt multiferroic heterostructures. AIP Advances, 7(5):055833, 2017.

[119] BY Zong, GC Han, YK Zheng, ZB Guo, KB Li, L Wang, JJ Qiu, ZY Liu, LH An, P Luo, et al. Ultrasoft and high magnetic moment nife film electrodeposited from a cuΘ2+ contained solution. IEEE transactions on magnetics, 42(10):2775–2777, 2006.

[120] Bonkeup Koo and Bongyoung Yoo. Electrodeposition of low-stress nife thin films from a highly acidic electrolyte. Surface and Coatings Technology, 205(3):740– 744, 2010.

[121] VB Naik, H Meng, JX Xiao, RS Liu, A Kumar, KY Zeng, P Luo, and S Yap. Effect of electric-field on the perpendicular magnetic anisotropy and strain properties in cofeb/mgo magnetic tunnel junctions. Applied Physics Letters, 105(5):052403, 2014.

[122] Wei Li, Yi Zeng, Zijing Zhao, Biao Zhang, Junjie Xu, Xiaoxiao Huang, and Yanglong Hou. 2d magnetic heterostructures and their interface modulated mag- netism. ACS Applied Materials & Interfaces, 13(43):50591–50601, 2021.

[123] Kritsanu Tivakornsasithorn, Taehee Yoo, Hakjoon Lee, Sangyeop Lee, Seonghoon Choi, Seul-Ki Bac, Kyung Jae Lee, Sanghoon Lee, Xinyu Liu, M Dobrowolska, et al. Magnetization reversal and interlayer exchange coupling in ferromagnetic metal/semiconductor fe/gamnas hybrid bilayers. Scientific reports, 8(1):1–11, 2018.

[124] Tomohiro Taniguchi, Julie Grollier, and Mark D Stiles. Spin-transfer torques gen- erated by the anomalous hall effect and anisotropic magnetoresistance. Physical Review Applied, 3(4):044001, 2015.

[125] Minoru Yafuso, Keishi Miyazaki, Yusei Takayama, Sora Obinata, and Takashi Kimura. Nonlinear power dependence of ferromagnetic resonance in nife/pt/cofeb trilayer. Journal of Physics: Condensed Matter, 34(4):045801, 2021.

[126] Anatolii F Kravets, AN Timoshevskii, BZ Yanchitsky, Michael A Bergmann, Johannes Buhler, Sebastian Andersson, and Vladislav Korenivski. Temperature- controlled interlayer exchange coupling in strong/weak ferromagnetic multilayers: A thermomagnetic curie switch. Physical Review B, 86(21):214413, 2012.

[127] Xiaoyong Liu, Wenzhe Zhang, Matthew J Carter, and Gang Xiao. Ferromagnetic resonance and damping properties of cofeb thin films as free layers in mgo-based magnetic tunnel junctions. Journal of Applied Physics, 110(3):033910, 2011.

[128] S Azzawi, AT Hindmarch, and D Atkinson. Magnetic damping phenomena in ferromagnetic thin-films and multilayers. Journal of Physics D: Applied Physics, 50(47):473001, 2017.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る