リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Evolution of Electronic States and Emergence of Superconductivity in the Polar Semiconductor GeTe by Doping Valence-Skipping Indium」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Evolution of Electronic States and Emergence of Superconductivity in the Polar Semiconductor GeTe by Doping Valence-Skipping Indium

M Kriener M Sakano M Kamitani M S Bahramy R Yukawa K Horiba H Kumigashira K Ishizaka Y Tokura Y Taguchi 東北大学 DOI:10.1103/PhysRevLett.124.047002

2020.01.31

概要

GeTe is a chemically simple IV–VI semiconductor which bears a rich plethora of different physical properties induced by doping and external stimuli. Here, we report a superconductor-semiconductor- superconductor transition controlled by finely-tuned In doping. Our results reveal the existence of a critical doping concentration xc = 0.12 in Ge1−xInxTe, where various properties, including structure, resistivity, charge carrier type, and the density of states, take either an extremum or change their character. At the same time, we find indications of a change in the In-valence state from In3+ to In1+ with increasing x by core-level photoemission spectroscopy, suggesting that this system is a new promising playground to probe valence fluctuations and their possible impact on structural, electronic, and thermodynamic properties of their host.

この論文で使われている画像

参考文献

[1] M. Cohen, Phys. Rev. 134, A511 (1964).

[2] N. Haldolaarachchige, Q. Gibson, W. Xie, M. B. Nielsen, S. Kushwaha, and R. J. Cava, Phys. Rev. B 93, 024520 (2016).

[3] K. Kobayashi, Y. Ai, H. O. Jeschke, and J. Akimitsu, Phys. Rev. B 97, 104511 (2018).

[4] M. Kriener, M. Kamitani, T. Koretsune, R. Arita, Y. Taguchi, and Y. Tokura, Phys. Rev. Mater. 2, 044802 (2018).

[5] C. Varma, Phys. Rev. Lett. 61, 2713 (1988).

[6] M. Dzero and J. Schmalian, Phys. Rev. Lett. 94, 157003 (2005).

[7] I. Hase, K. Yasutomi, T. Yanagisawa, K. Odagiri, and T. Nishio, Physica (Amsterdam) 527C, 85 (2016).

[8] I. Hase, T. Yanagisawa, and K. Kawashima, Nanoscale Res. Lett. 12, 127 (2017).

[9] Y. Matsushita, H. Bluhm, T. H. Geballe, and I. R. Fisher, Phys. Rev. Lett. 94, 157002 (2005).

[10] Z. Ren, M. Kriener, A. A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, Phys. Rev. B 87, 064512 (2013).

[11] T. Wakita, E. Paris, K. Kobayashi, K. Terashima, M. Y. Hacisalihoğlu, T. Ueno, F. Bondino, E. Magnano, I. Píš, L. Olivi et al., Phys. Chem. Chem. Phys. 19, 26672 (2017).

[12] R. J. Cava, B. Batlogg, J. J. Krajewski, R. Farrow, L. W. Rupp, Jr., A. E. White, K. Short, W. F. Peck, and T. Kometani, Nature (London) 332, 814 (1988).

[13] A brief comparison of Sn1−xInxTe and Ge1−xInxTe can be found in Section S11 of the Supplemental Material Ref. [14].

[14] See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevLett.124.047002 for complementing data which includes Refs. [15–28].

[15] K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).

[16] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowski, F. Tran, and L. D. Marks, WIEN2k Package, Version 13.1. Techn. Universität Wien, Austria (2013).

[17] M. D. Banus, R. E. Hanneman, M. Stroncin, and K. Gooen, Science 142, 662 (1963).

[18] H. E. Bömmel, A. J. Darnell, W. F. Libby, B. R. Tittmann, and A. J. Yencha, Science 141, 714 (1963).

[19] S. Geller, A. Jayaraman, and G. W. Hull, Jr., Appl. Phys. Lett. 4, 35 (1964).

[20] S. Geller and G. W. Hull, Jr., Phys. Rev. Lett. 13, 127 (1964).

[21] J. K. Hulm, M. Ashkin, D. W. Deis, and C. K. Jones, Prog. Low Temp. Phys. 6, 205 (1970).

[22] E. H. Brandt, Phys. Rev. B 60, 11939 (1999).

[23] M. P. Seah and W. A. Dench, Surf. Interface Anal. 1, 2 (1979).

[24] M. Novak, S. Sasaki, M. Kriener, K. Segawa, and Y. Ando, Phys. Rev. B 88, 140502(R) (2013).

[25] S. Sasaki, Z. Ren, A. A. Taskin, K. Segawa, L. Fu, and Y. Ando, Phys. Rev. Lett. 109, 217004 (2012).

[26] S. Maeda, R. Hirose, K. Matano, M. Novak, Y. Ando, and G.-q. Zheng, Phys. Rev. B 96, 104502 (2017).

[27] Y. Tanaka, Z. Ren, T. Sato, K. Nakayama, S. Souma, T. Takahashi, K. Segawa, and Y. Ando, Nat. Phys. 8, 800 (2012).

[28] T. Sato, Y. Tanaka, K. Nakayama, S. Souma, T. Takahashi, S. Sasaki, Z. Ren, A. A. Taskin, K. Segawa, and Y. Ando, Phys. Rev. Lett. 110, 206804 (2013).

[29] J. E. Boschker, R. Wang, and R. Calarco, Cryst. Eng. Commun. 19, 5324 (2017).

[30] R. Hein, J. Gibson, R. Mazelsky, R. Miller, and J. Hulm, Phys. Rev. Lett. 12, 320 (1964).

[31] D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, Nat. Mater. 7, 972 (2008).

[32] M. Kriener, T. Nakajima, Y. Kaneko, A. Kikkawa, X. Z. Yu, N. Endo, K. Kato, M. Takata, T. Arima, Y. Tokura et al., Sci. Rep. 6, 25748 (2016).

[33] M. Kriener, T. Nakajima, Y. Kaneko, A. Kikkawa, D. Hashizume, K. Kato, M. Takata, T. Arima, Y. Tokura, and Y. Taguchi, Phys. Rev. B 95, 224418 (2017).

[34] R. W. Cochrane, M. Plischke, and J. O. Ström-Olsen, Phys. Rev. B 9, 3013 (1974).

[35] H. Przybylińska, G. Springholz, R. T. Lechner, M. Hassan, M. Wegscheider, W. Jantsch, and G. Bauer, Phys. Rev. Lett. 112, 047202 (2014).

[36] D. Kriegner, J. Furthmüller, R. Kirchschlager, J. Endres, L. Horak, P. Cejpek, H. Reichlova, X. Marti, D. Primetzhofer, A. Ney et al., Phys. Rev. B 94, 054112 (2016).

[37] E. M. Levin, M. F. Besser, and R. Hanus, J. Appl. Phys. 114, 083713 (2013).

[38] F. Herman, R. L. Kortum, I. B. Ortenburger, and J. P. van Dyke, J. Phys. (Paris), Colloq. 29, C4-62 (1968).

[39] A. Lau and C. Ortix, Phys. Rev. Lett. 122, 186801 (2019).

[40] D. D. Sante, P. Barone, R. Bertacco, and S. Picozzi, Adv. Mater. 25, 509 (2013).

[41] J. Krempaský, S. Muff, F. Bisti, M. Fanciulli, H. Volfová, A. Weber, N. Pilet, P. Warnicke, H. Ebert, J. Braun et al., Nat. Commun. 7, 13071 (2016).

[42] We note that, in literature, the ferroelectric distortion is traced back to either a displacive or an order-disorder transition, cf. Refs. [43,44], and references therein.

[43] P. Fons, A. V. Kolobov, M. Krbal, J. Tominaga, K. S. Andrikopoulos, S. N. Yannopoulos, G. A. Voyiatzis, and T. Uruga, Phys. Rev. B 82, 155209 (2010).

[44] T. Matsunaga, P. Fons, A. V. Kolobov, J. Tominaga, and N. Yamada, Appl. Phys. Lett. 99, 231907 (2011).

[45] J. Goldak, C. S. Barrett, D. Innes, and W. Youdelis, J. Chem. Phys. 44, 3323 (1966).

[46] We note that the density of states below XF consists not purely of Te 5p states, but also contains some contributions originating from Ge states. For simplicity they are omitted in Figs. 1(c) and 4(d).

[47] For a comprehensive discussion of the Ge vacancy formation, see A. H. Edwards, A. Pineda, P. Schultz, M. Martin,A. Thompson, H. Hjalmarson, and C. Umrigar, Phys. Rev. B 73, 045210 (2006).

[48] J. C. Woolley, J. Electrochem. Soc. 112, 906 (1965).

[49] N. K. Abrikosov and G. T. Danilova-Dobryakova, Interme- tallics 12, 1005 (1976).

[50] S. A. Nemov, R. V. Parfeniev, D. V. Shamshur, M. O. Safonchik, and J. Stepien-Damm, Czech. J. Phys. 46, 863 (1996).

[51] L. Wu, X. Li, S. Wang, T. Zhang, J. Yang, W. Zhang, L. Chen, and J. Yang, NPG Asia Mater. 9, e343 (2017).

[52] The charge carrier concentration of the sample Ge1−δTe used in this study suggests that it does not superconduct down to 50 mK according to the phase diagram published in Ref. [30].

[53] J.-M. Themlin, M. Chtaib, L. Henrard, P. Lambin, J. Darville, and J.-M. Gilles, Phys. Rev. B 46, 2460 (1992).

[54] A. S. Erickson, J.-H. Chu, M. F. Toney, T. H. Geballe, and I. R. Fisher, Phys. Rev. B 79, 024520 (2009).

[55] M. Zhu, O. Cojocaru-Mire´din, A. M. Mio, J. Keutgen, M. Küpers, Y. Yu, J. Cho, R. Dronskowski, and M. Wuttig, Adv. Mater. 30, 1706735 (2018).

[56] M. Wuttig, V. L. Deringer, X. Gonze, C. Bichara, and J. Raty, Adv. Mater. 30, 1803777 (2018).

[57] J. Raty, M. Schumacher, P. Golub, V. L. Deringer, C. Gatti, and M. Wuttig, Adv. Mater. 31, 1806280 (2019).

[58] Y. Onodera and Y. Toyozawa, J. Phys. Soc. Jpn. 24, 341 (1968).

参考文献をもっと見る