リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Single crystalline-like crystallographic texture formation of pure tungsten through laser powder bed fusion」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Single crystalline-like crystallographic texture formation of pure tungsten through laser powder bed fusion

Todo, Tsubasa 大阪大学

2022.01.01

概要

We successfully formed the first prominent crystallographic texture of tungsten using laser powder bed fusion (LPBF). It is difficult even to manufacture highly dense tungsten products using LPBF because of its extremely high melting point and high thermal conductivity. By tuning the laser process parameters, we succeeded in fabricating almost fully dense pure tungsten parts with a relative density of 99.1%, which is the highest value yet to be reported. More importantly, a single crystalline-like prominent crystallographic texture evolved, in which <011> preferentially oriented in the scanning direction. This texture was formed to reduce the crystal misorientation at the melt pool center, at which the solidification fronts from the right and left halves of the melt pool encounter. This texture formation mechanism is similar to that of conventional alloys with ordinary thermal properties; however, the crystal growth directionality that governs the crystallographic orientation differs according to the melt pool morphology.

この論文で使われている画像

参考文献

[1] L. Huang, L. Jiang, T.D. Topping, C. Dai, X. Wang, R. Carpenter, C. Haines,J.M. Schoenung, Acta. Mater. 122 (2017) 19–31.

[2] F. Maury, M. Biget, P. Vajda, A. Lucasson, P. Lucasson, Radiat. Eff. 38 (1978) 53–65.

[3] E. Lassner, W.D. Schubert, Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, Springer, US, 2012.

[4] J. Ma, J. Zhang, W. Liu, Z. Shen, J. Nucl. Mater. 438 (2013) 199–203.

[5] S.W.H. Yih, W. Yih, C.T. Wang, Tungsten: Sources, Metallurgy, Properties, and Applications, Springer, US, 1979.

[6] T. Watanabe, H. Fujii, H. Oikawa, K.I. Arai, Acta. Metall. 37 (1989) 941–952.

[7] V. Randle, Acta. Mater. 52 (2004) 4067–4081.

[8] P. Kontis, E. Chauvet, Z. Peng, J. He, A.K. da Silva, D. Raabe, C. Tassin, J.-J. Blandin, S. Abed, R. Dendievel, B. Gault, G. Martin, Acta. Mater. 177 (2019) 209–221.

[9] H. Kokawa, M. Shimada, M. Michiuchi, Z.J. Wang, Y.S. Sato, Acta. Mater. 55 (2007) 5401–5407.

[10] A. Ivekovic´, N. Omidvari, B. Vrancken, K. Lietaert, L. Thijs, K. Vanmeensel,J. Vleugels, J.-P. Kruth, Int. J. Refract. Met. Hard Mater. 72 (2018) 27–32.

[11] I.M. Mikhailovskij, T.I. Mazilova, V.N. Voyevodin, A.A. Mazilov, Phys. Rev. B 83 (2011) 134115.

[12] D. Wang, Z. Wang, K. Li, J. Ma, W. Liu, Z. Shen, Mater. Des. 162 (2019) 384–393.

[13] O. Gokcekaya, T. Ishimoto, S. Hibino, J. Yasutomi, T. Narushima, T Nakano, Acta. Mater. 212 (2021) 116876.

[14] T. Ishimoto, S. Wu, Y. Ito, S.-H. Sun, H. Amano, T. Nakano, ISIJ Int (2020) 1758–1764.

[15] Q. Chao, V. Cruz, S. Thomas, N. Birbilis, P. Collins, A. Taylor, P.D. Hodgson,D. Fabijanic, Scr. Mater. 141 (2017) 94–98.

[16] Y. Zhang, J. Zhang, Q. Yan, L. Zhang, M. Wang, B. Song, Y. Shi, Scr. Mater. 148 (2018) 20–23.

[17] T. Ishimoto, K. Hagihara, K. Hisamoto, S.-H. Sun, T. Nakano, Scr. Mater. 132 (2017) 34–38.

[18] S.-H. Sun, T. Ishimoto, K. Hagihara, Y. Tsutsumi, T. Hanawa, T. Nakano, Scr. Mater. 159 (2019) 89–93.

[19] O. Gokcekaya, N. Hayashi, T. Ishimoto, K. Ueda, T. Narushima, T. Nakano, Addit. Manuf. (2020) 101624.

[20] O. Gokcekaya, T. Ishimoto, T. Todo, R. Suganuma, R. Fukushima, T. Narushima,T. Nakano, Crystals 11 (2021) 9.

[21] M. Higashi, T. Ozaki, Mater. Des. 191 (2020) 108588.

[22] L. Thijs, M.L. Montero Sistiaga, R. Wauthle, Q. Xie, J.-P. Kruth, J. Van Humbeeck, Acta. Mater. 61 (2013) 4657–4668.

[23] J. Yang, X. Jin, H. Gao, D. Zhang, H. Chen, S. Zhang, X. Li, Mater. Charact. 170 (2020) 110694.

[24] C. Tan, K. Zhou, W. Ma, B. Attard, P. Zhang, T. Kuang, Sci. Technol. Adv. Mater. 19 (2018) 370–380.

[25] A.v. Müller, G. Schlick, R. Neu, C. Anstätt, T. Klimkait, J. Lee, B. Pascher,M. Schmitt, C. Seidel, Nucl. Mater. Energy 19 (2019) 184–188.

[26] Z. Xiong, P. Zhang, C. Tan, D. Dong, W. Ma, K. Yu, Adv. Eng. Mater. 22 (2020) 1901352.

[27] Z. Hu, Y. Zhao, K. Guan, Z. Wang, Z. Ma, Addit. Manuf. 36 (2020) 101579.

[28] T. Yamamoto, M. Hara, Y. Hatano, Int. J. Refract. Met. Hard Mater. 95 (2021) 105410.

[29] S. Wen, C. Wang, Y. Zhou, L. Duan, Q. Wei, S. Yang, Y. Shi, Opt. Laser Technol. 116 (2019) 128–138.

[30] O. Andreau, I. Koutiri, P. Peyre, J.-D. Penot, N. Saintier, E. Pessard, T. De Terris,C. Dupuy, T. Baudin, J. Mater. Process. Technol. 264 (2019) 21–31.

[31] A. Takase, T. Ishimoto, N. Morita, N. Ikeo, T. Nakano, Crystals 11 (2021) 796.

[32] Q. Chen, X. Liang, D. Hayduke, J. Liu, L. Cheng, J. Oskin, R. Whitmore, A.C. To, Addit. Manuf. 28 (2019) 406–418.

[33] M.-S. Pham, B. Dovgyy, P.A. Hooper, C.M. Gourlay, A. Piglione, Nat. Commun. 11 (2020) 749.

[34] H.J. Willy, X. Li, Z. Chen, T.S. Herng, S. Chang, C.Y.A. Ong, C. Li, J. Ding, Mater. Design 157 (2018) 24–34.

[35] G.L. Knapp, N. Raghavan, A. Plotkowski, T. DebRoy, Addit. Manuf. 25 (2019) 511–521.

[36] A.T. Sidambe, Y. Tian, P.B. Prangnell, P. Fox, Int. J. Refract. Met. Hard Mater. 78 (2019) 254–263.

[37] S.-H. Sun, K. Hagihara, T. Nakano, Mater. Des. 140 (2018) 307–316.

[38] T. Ishimoto, K. Hagihara, K. Hisamoto, T. Nakano, Addit. Manuf. 43 (2021) 102004.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る