リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of TiNbTaZrMo bio-high entropy alloy (BioHEA) super-solid solution by selective laser melting, and its improved mechanical property and biocompatibility」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of TiNbTaZrMo bio-high entropy alloy (BioHEA) super-solid solution by selective laser melting, and its improved mechanical property and biocompatibility

Ishimoto, Takuya 大阪大学

2021.03.15

概要

BioHEAs, specifically designed high entropy alloy (HEA) systems for biomedical applications, represent a new era for biometals. However, recent challenges are (1) the poor shape customizability, and (2) the inevitable severe segregation due to the intrinsic fact that HEA is an ultra-multicomponent alloy system. To achieve shape customization and suppression of elemental segregation simultaneously, we used an extremely high cooling rate (~107 K/s) of the selective laser melting (SLM) process. We, for the first time, developed pre-alloyed Ti1.4Nb0.6Ta0.6Zr1.4Mo0.6 BioHEA powders and SLM-built parts with low porosity, customizable shape, excellent yield stress, and good biocompatibility. The SLM-built specimens showed drastically suppressed elemental segregation compared to the cast counterpart, representing realization of a super-solid solution. As a result, the 0.2% proof stress reached 1690 ± 78 MPa, which is significantly higher than that of cast Ti1.4Nb0.6Ta0.6Zr1.4Mo0.6 (1140 MPa). The SLM-built Ti1.4Nb0.6Ta0.6Zr1.4Mo0.6 BioHEA is promising as a next-generation metallic material for biomedical applications.

この論文で使われている画像

参考文献

[1] Y.J. Liu, S.J. Li, H.L. Wang, W.T. Hou, Y.L. Hao, R. Yang, T.B. Sercombe, L.C. Zhang, Acta Mater. 113 (2016) 56–67.

[2] M. Todai, T. Nagase, T. Hori, A. Matsugaki, A. Sekita, T. Nakano, Scr. Mater. 129 (2017) 65–68.

[3] T. Nagase, K. Mizuuchi, T. Nakano, Entropy 21 (2019) 483.

[4] T. Hori, T. Nagase, M. Todai, A. Matsugaki, T. Nakano, Scr. Mater. 172 (2019) 83–87.

[5] T. Nagase, M. Todai, T. Hori, T. Nakano, J. Alloys Compd. 753 (2018) 412–421.

[6] T. Nagase, Y. Iijima, A. Matsugaki, K. Ameyama, T. Nakano, Mater. Sci. Eng. C-107 (2020) 110322.

[7] A. Motallebzadeh, N.S. Peighambardoust, S. Sheikh, H. Murakami, S. Guo, D. Canadinc, Intermetallics 113 (2019) 106572.

[8] Y. Yuan, Y. Wu, Z. Yang, X. Liang, Z. Lei, H. Huang, H. Wang, X. Liu, K. An, W. Wu, Z. Lu, Mater. Res. Lett. 7 (2019) 225–231.

[9] G. Popescu, B. Ghiban, C.A. Popescu, L. Rosu, R. Trusca, I. Carcea, V. Soare, D. Dumitrescu, I. Constantin, M.T. Olaru, B.A. Carlan, in: Proceedings of the IOP 400 Conference Series, 2018.

[10] G. Perumal, H.S. Grewal, M. Pole, L.V.K. Reddy, S. Mukherjee, H. Singh, G. Manivasagam, H.S. Arora, ACS Appl. Bio Mater. 3 (2020) 1233–1244.

[11] S.P. Wang, J. Xu, Mater. Sci. Eng. C-73 (2017) 80–89.

[12] Y. Qiu, S. Thomas, M.A. Gibson, H.L. Fraser, N. Birbilis, npj Mater. Degrad. 1 (2017) 15.

[13] J.K. Jensen, B.A. Welk, R.E.A. Williams, J.M. Sosa, D.E. Huber, O.N. Senkov, G.B. Viswanathan, H.L. Fraser, Scr. Mater. 121 (2016) 1–4.

[14] E. Lee, B. Mishra, Mater. Trans. 58 (2017) 1624–1627.

[15] T. Nagase, M. Takemura, M. Matsumuro, T. Maruyama, Mater. Trans. 59 (2018) 255–264.

[16] R.W. Cahn, Physical Metallurgy, third ed., Elsevier Science Publishers, North-Holland, 1996.

[17] Q. Jia, P. Rometsch, P. Kürnsteiner, Q. Chao, A. Huang, M. Weyland, L. Bourgeois, X. Wu, Acta Mater. 171 (2019) 108–118.

[18] D. Gu, Q. Shi, K. Lin, L. Xi, Addit. Manuf. 22 (2018) 265–278.

[19] O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, J. Alloys Compd. 509 (2011) 6043–6048.

[20] M.C. Gao, J.-W. Yeh, P.K. Liaw, Y. Zhang, Fundamentals and Applications, first ed., Springer, Switzerland, 2016.

[21] B.S. Murty, J.-W. Yeh, S. Ranganathan, High-Entropy Alloys, first ed., Butterworth-Heinemann, Oxford, 2014.

[22] F. Yan, W. Xiong, E.J. Faierson, Materials 10 (2017) 1260.

[23] J.N. Dupont, ASM Handbook, Volume 6A: Welding Fundamentals and Processes, ASM International: Materials Park, OH, 2011.

[24] K. Karayagiz, L. Johnson, R. Seede, V. Attari, B. Zhang, X. Huang, S. Ghosh, T. Duong, I. Karaman, A. Elwany, R. Arróyave, Acta Mater. 185 (2020) 320–339.

[25] P. Promoppatum, S.C. Yao, P.C. Pistorius, A.D. Rollett, Engineering 3 (2017) 685–694.

[26] R. Shi, S.A. Khairallah, T.T. Roehling, T.W. Heo, J.T. McKeown, M.J. Matthews, Acta Mater. 184 (2020) 284–305.

[27] M.S. Pham, B. Dovgyy, P.A. Hooper, C.M. Gourlay, A. Piglione, Nat. Commun. 11 (2020) 749.

[28] T. Ishimoto, S. Wu, Y. Ito, S.H. Sun, H. Amano, T. Nakano, ISIJ Int. 60 (2020) 1758–1764.

[29] S.H. Sun, T. Ishimoto, K. Hagihara, Y. Tsutsumi, T. Hanawa, T. Nakano, Scr. Mater. 159 (2019) 89–93.

[30] N. Nadammal, S. Cabeza, T. Mishurova, T. Thiede, A. Kromm, C. Seyfert, L. Farahbod, C. Haberland, J.A. Schneider, P.D. Portella, G. Bruno, Mater. Des. 134 (2017) 139–150.

[31] R.W. Messler, Principles of Welding, Wiley, NY, 2008.

[32] O. Gokcekaya, N. Hayashi, T. Ishimoto, K. Ueda, T. Narushima, T. Nakano, Addit. Manuf. (2020) 101624.

[33] J. Zou, Y. Gaber, G. Voulazeris, S. Li, L. Vazquez, L.-F. Liu, M.-Y. Yao, Y.-J. Wang, M. Holynski, K. Bongs, M.M. Attallah, Acta Mater. 158 (2018) 230–238.

[34] T. Ishimoto, K. Hagihara, K. Hisamoto, S.H. Sun, T. Nakano, Scr. Mater. 132 (2017) 34–38.

[35] F. Geiger, K. Kunze, T. Etter, Mater. Sci. Eng. A 661 (2016) 240–246.

[36] J.W. Yeh, JOM 65 (2013) 1759–1771.

[37] M. Niinomi, Sci. Technol. Adv. Mater. 4 (2003) 445–454.

[38] Y. Yang, X. Wang, Y. Wang, X. Hu, N. Kawazoe, Y. Yang, G. Chen, Sci. Rep. 9 (2019) 6891.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る