リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「THBS1-producing tumor-infiltrating monocyte-like cells contribute to immunosuppression and metastasis in colorectal cancer」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

THBS1-producing tumor-infiltrating monocyte-like cells contribute to immunosuppression and metastasis in colorectal cancer

Omatsu, Mayuki Nakanishi, Yuki Iwane, Kosuke Aoyama, Naoki Duran, Angeles Muta, Yu Martinez-Ordoñez, Anxo Han, Qixiu Agatsuma, Nobukazu Mizukoshi, Kenta Kawai, Munenori Yamakawa, Go Namikawa, Mio Hamada, Kensuke Fukunaga, Yuichi Utsumi, Takahiro Sono, Makoto Masuda, Tomonori Hata, Akitaka Araki, Osamu Nagao, Munemasa Yoshikawa, Takaaki Ogawa, Satoshi Hiramatsu, Yukiko Tsuda, Motoyuki Maruno, Takahisa Kogame, Toshiaki Kasashima, Hiroaki Kakiuchi, Nobuyuki Nakagawa, Masahiro M. Kawada, Kenji Yashiro, Masakazu Maeda, Kiyoshi Saito, Yasuyuki Matozaki, Takashi Fukuda, Akihisa Kabashima, Kenji Obama, Kazutaka Ogawa, Seishi Sheibani, Nader Diaz-Meco, Maria T. Moscat, Jorge Seno, Hiroshi 京都大学 DOI:10.1038/s41467-023-41095-y

2023.09.25

概要

Mesenchymal activation, characterized by dense stromal infiltration of immune and mesenchymal cells, fuels the aggressiveness of colorectal cancers (CRC), driving progression and metastasis. Targetable molecules in the tumor microenvironment (TME) need to be identified to improve the outcome in CRC patients with this aggressive phenotype. This study reports a positive link between high thrombospondin-1 (THBS1) expression and mesenchymal characteristics, immunosuppression, and unfavorable CRC prognosis. Bone marrow-derived monocyte-like cells recruited by CXCL12 are the primary source of THBS1, which contributes to the development of metastasis by inducing cytotoxic T-cell exhaustion and impairing vascularization. Furthermore, in orthotopically generated CRC models in male mice, THBS1 loss in the TME renders tumors partially sensitive to immune checkpoint inhibitors and anti-cancer drugs. Our study establishes THBS1 as a potential biomarker for identifying mesenchymal CRC and as a critical suppressor of antitumor immunity that contributes to the progression of this malignancy with a poor prognosis.

この論文で使われている画像

関連論文

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.

Data availability

The data generated in this study are available in the Genomic Expression Archive (GEA) database under the accession numbers E-GEAD-561

for bulk RNA-seq [https://ddbj.nig.ac.jp/public/ddbj_database/gea/

experiment/E-GEAD-000/E-GEAD-561/] and E-GEAD-562 for scRNAseq data [https://ddbj.nig.ac.jp/public/ddbj_database/gea/experiment

/E-GEAD-000/E-GEAD-562/]. Data for TCGA-COREAD was accessed

through cBioportal (https://www.cbioportal.org). Raw gene expression data of CRC patient dataset (GSE35602, GSE14333 and GSE17536)

were directly accessed through the GEO website (NCBI). Raw gene

expression (count) data and metadata of single cell transcriptomic

dataset of human CRCs (SMC) were directly accessed through the GEO

website (GSE132465), and converted into Seurat object. Published

single cell transcriptome data of orthotopic MTO tumor was downloaded from GEO website (GSE154863), and converted into Seurat

object. The remaining data are available in the Article, Supplementary

Information or Source Data file. Source data are provided with

this paper.

Nature Communications | (2023)14:5534

16.

17.

18.

19.

20.

21.

Martinez-Ordoñez, A. et al. Hyaluronan driven by epithelial aPKC

deficiency remodels the microenvironment and creates a vulnerability in mesenchymal colorectal cancer. Cancer Cell 41,

252–271.e259 (2023).

Calon, A. et al. Stromal gene expression defines poor-prognosis

subtypes in colorectal cancer. Nat. Genet. 47, 320–329 (2015).

Nakanishi, Y. et al. Simultaneous loss of both atypical protein kinase

C genes in the intestinal epithelium drives serrated intestinal cancer

by impairing immunosurveillance. Immunity 49, 1132–1147.e1137

(2018).

Kasashima, H. et al. Stromal SOX2 upregulation promotes tumorigenesis through the generation of a SFRP1/2-expressing cancerassociated fibroblast population. Dev. Cell 56, 95–110.e110

(2021).

Guinney, J. et al. The consensus molecular subtypes of colorectal

cancer. Nat. Med. 21, 1350–1356 (2015).

Becht, E. et al. Immune and stromal classification of colorectal

cancer is associated with molecular subtypes and relevant for

precision immunotherapy. Clin. Cancer Res. 22, 4057–4066

(2016).

De Sousa, E. et al. Poor-prognosis colon cancer is defined by a

molecularly distinct subtype and develops from serrated precursor

lesions. Nat. Med. 19, 614–618 (2013).

Goswami, S., Anandhan, S., Raychaudhuri, D. & Sharma, P. Myeloid

cell-targeted therapies for solid tumours. Nat. Rev. Immunol.

(2022).

Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

Kalluri, R. The biology and function of fibroblasts in cancer. Nat.

Rev. Cancer 16, 582–598 (2016).

Sweetwyne, M. T. & Murphy-Ullrich, J. E. Thrombospondin1 in tissue

repair and fibrosis: TGF-β-dependent and independent mechanisms. Matrix Biol. 31, 178–186 (2012).

Ramchandani, D. & Mittal, V. Thrombospondin in Tumor Microenvironment. Adv. Exp. Med. Biol. 1272, 133–147 (2020).

Markovic, S. N. et al. A phase II study of ABT-510 (thrombospondin-1

analog) for the treatment of metastatic melanoma. Am J Clin Oncol

30, 303–309 (2007).

Ebbinghaus, S. et al. Phase 2 study of ABT-510 in patients with

previously untreated advanced renal cell carcinoma. Clin. Cancer

Res. 13, 6689–6695 (2007).

Baker, L. H. et al. Randomized, phase II study of the

thrombospondin-1-mimetic angiogenesis inhibitor ABT-510 in

patients with advanced soft tissue sarcoma. J. Clin. Oncol. 26,

5583–5588 (2008).

Joanito, I. et al. Single-cell and bulk transcriptome sequencing

identifies two epithelial tumor cell states and refines the consensus

molecular classification of colorectal cancer. Nat. Genet. 54,

963–975 (2022).

Tauriello, D. V. F. et al. TGFβ drives immune evasion in genetically

reconstituted colon cancer metastasis. Nature 554,

538–543 (2018).

Zhao, Y. et al. Thrombospondin-1 triggers macrophage IL-10 production and promotes resolution of experimental lung injury.

Mucosal. Immunol. 7, 440–448 (2014).

Connolly, K. A. et al. A reservoir of stem-like CD8. Sci. Immunol. 6,

eabg7836 (2021).

Li, H. et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell 176,

775–789.e718 (2019).

Krishna, S. et al. Stem-like CD8 T cells mediate response of adoptive

cell immunotherapy against human cancer. Science 370,

1328–1334 (2020).

17

Article

22. Li, Z., He, L., Wilson, K. & Roberts, D. Thrombospondin-1 inhibits

TCR-mediated T lymphocyte early activation. J. Immunol. 166,

2427–2436 (2001).

23. Sato, T. et al. Reciprocal control of G1-phase progression is required

for Th-POK/Runx3-mediated CD4/8 thymocyte cell fate decision. J.

Immunol. 189, 4426–4436 (2012).

24. Jiménez, B. et al. Signals leading to apoptosis-dependent inhibition

of neovascularization by thrombospondin-1. Nat. Med. 6,

41–48 (2000).

25. Volpert, O. V. et al. Inducer-stimulated Fas targets activated endothelium for destruction by anti-angiogenic thrombospondin-1 and

pigment epithelium-derived factor. Nat. Med. 8, 349–357 (2002).

26. Lamy, L. et al. Interactions between CD47 and thrombospondin

reduce inflammation. J. Immunol. 178, 5930–5939 (2007).

27. Ribeiro, S. M., Poczatek, M., Schultz-Cherry, S., Villain, M. & MurphyUllrich, J. E. The activation sequence of thrombospondin-1 interacts

with the latency-associated peptide to regulate activation of latent

transforming growth factor-beta. J. Biol. Chem. 274,

13586–13593 (1999).

28. Schultz-Cherry, S. et al. Regulation of transforming growth factorbeta activation by discrete sequences of thrombospondin 1. J. Biol.

Chem. 270, 7304–7310 (1995).

29. Ma, X. et al. CD36-mediated ferroptosis dampens intratumoral CD8.

Cell Metab. 33, 1001–1012.e1005 (2021).

30. Lee, H. O. et al. Lineage-dependent gene expression programs

influence the immune landscape of colorectal cancer. Nat. Genet.

52, 594–603 (2020).

31. Zhang, L. et al. Single-cell analyses inform mechanisms of myeloidtargeted therapies in colon cancer. Cell 181, 442–459.e429 (2020).

32. Ma, J., Sun, X., Wang, Y., Chen, B. & Qian, L. Fibroblast-derived

CXCL12 regulates PTEN expression and is associated with the proliferation and invasion of colon cancer cells via PI3k/Akt signaling.

Cell Commun. Signal. 17, 119 (2019).

33. Khaliq, A. M. et al. Refining colorectal cancer classification and

clinical stratification through a single-cell atlas. Genome Biol. 23,

113 (2022).

34. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

35. Daubon, T. et al. Deciphering the complex role of thrombospondin1 in glioblastoma development. Nat. Commun. 10, 1146 (2019).

36. Saadi, A. et al. Stromal genes discriminate preinvasive from invasive

disease, predict outcome, and highlight inflammatory pathways in

digestive cancers. Proc. Natl Acad. Sci. USA 107, 2177–2182 (2010).

37. Hoshino, A. et al. Extracellular vesicle and particle biomarkers

define multiple human cancers. Cell 182, 1044–1061.e1018 (2020).

38. Cao, L. et al. Proteogenomic characterization of pancreatic ductal

adenocarcinoma. Cell 184, 5031–5052.e5026 (2021).

39. Yang, H., Zhou, T., Sorenson, C. M., Sheibani, N. & Liu, B. MyeloidDerived TSP1 (Thrombospondin-1) contributes to abdominal aortic

aneurysm through suppressing tissue inhibitor of

metalloproteinases-1. Arterioscler. Thromb. Vasc. Biol. 40,

e350–e366 (2020).

40. Memetimin, H. et al. Myeloid-specific deletion of thrombospondin 1

protects against inflammation and insulin resistance in long-term

diet-induced obese male mice. Am. J. Physiol. Endocrinol. Metab.

315, E1194–E1203 (2018).

41. Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as

regulators of the immune system. Nat. Rev. Immunol. 9,

162–174 (2009).

42. Condamine, T., Ramachandran, I., Youn, J. I. & Gabrilovich, D. I.

Regulation of tumor metastasis by myeloid-derived suppressor

cells. Annu. Rev. Med. 66, 97–110 (2015).

43. Gubin, M. M. et al. High-dimensional analysis delineates myeloid and

lymphoid compartment remodeling during successful immunecheckpoint cancer therapy. Cell 175, 1014–1030.e1019 (2018).

Nature Communications | (2023)14:5534

https://doi.org/10.1038/s41467-023-41095-y

44. Zhu, Y. et al. Tissue-resident macrophages in pancreatic ductal

adenocarcinoma originate from embryonic hematopoiesis and

promote tumor progression. Immunity 47, 323–338.e326

(2017).

45. Dawson, D. W. et al. CD36 mediates the In vitro inhibitory effects of

thrombospondin-1 on endothelial cells. J. Cell Biol. 138,

707–717 (1997).

46. Bagavandoss, P. & Wilks, J. W. Specific inhibition of endothelial cell

proliferation by thrombospondin. Biochem. Biophys. Res. Commun.

170, 867–872 (1990).

47. Saito, Y. et al. SIRPα. Proc. Natl Acad. Sci. USA 114,

E10151–E10160 (2017).

48. Bankhead, P. et al. QuPath: open source software for digital

pathology image analysis. Sci. Rep. 7, 16878 (2017).

49. Robinson, S. M. et al. Pathogenesis of FOLFOX induced sinusoidal

obstruction syndrome in a murine chemotherapy model. J. Hepatol.

59, 318–326 (2013).

50. Schindelin, J. et al. Fiji: an open-source platform for biologicalimage analysis. Nat. Methods 9, 676–682 (2012).

51. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell

184, 3573–3587.e3529 (2021).

52. Hafemeister, C. & Satija, R. Normalization and variance stabilization

of single-cell RNA-seq data using regularized negative binomial

regression. Genome Biol. 20, 296 (2019).

53. Eide, P. W., Bruun, J., Lothe, R. A. & Sveen, A. CMScaller: an R

package for consensus molecular subtyping of colorectal cancer

pre-clinical models. Sci. Rep. 7, 16618 (2017).

54. Niu, B. et al. MSIsensor: microsatellite instability detection using

paired tumor-normal sequence data. Bioinformatics 30,

1015–1016 (2014).

Acknowledgements

Research was supported by the Project for Cancer Research and

Therapeutic Evolution (P-CREATE, 18cm0106142h0001 (A.F.),

20cm0106177h0001 (H.S.), 20cm0106375h0001 (A.F.),

21cm0106283h0001 (Y.N.)), P-PROMOTE (22cm0106283h0002 (Y.N.),

22ama221515h0001 (H.S.)), and PRIME (20gm6010022h0003 (A.F.))

from the Japan Agency for Medical Research and Development (AMED);

the Fusion Oriented Research for disruptive Science and Technology

(FOREST, 23719768 (Y.N.)); Moonshot Research and Development Program (JPMJMS2022-1), and COI-NEXT (JPMJPF2018); the JSPS KAKENHI

(JP19H03639 (A.F.), JP20K22841 (Y.H.), JP20H03659 (H.S.), JP21K19480

(H.S.), and JP21H02902 (Y.N.)); the foundations of Takeda Science (Y.N.),

Princess Takamatsu Cancer Research (Y.N.), Astellas, Daiichi Sankyo of

Life Science (Y.N.); JST SPRING (JPMJSP2110 (M.O.)). We thank Mason

Freeman (Harvard Medical School) for providing CD36-/- mice and

Toshiko Sato for technical assistance. A part of this study was conducted

through the CORE Program of the Radiation Biology Center, Kyoto

University.

Author contributions

M.O. and Y.N. coordinated the project and designed the experiments

with help from K.Mi., M.K., G.Y., Mi.N., K.H., Y.F., M.S., T.Mas., O.A.,

Mu.N., T.Y., Sa.O., Y.H., M.T. and A.F. M.O., K.I. and T.Mar. performed the

experiments with help from A.H., T.K. and K.Kab. N.Ao. analyzed TMA

data with help from Q.H. and A.M-O. N.Ag., T.U., H.K., K.Kaw., M.Y.,

K.Ma., Y.S., T.Mat., K.O., and N.S. provided materials that made the study

possible. M.O. and K.I. performed scRNA-seq with help from N.K.,

M.M.N. and Se.O. M.O., K.I. and Y.N. analyzed the data with help from

Y.M. and A.D. M.O and Y.N. wrote the manuscript with help from A.F.,

M.T-M., J.M. and H.S.

Competing interests

Yuichi Fukunaga is employed by Sumitomo Pharma Co., Ltd. The

remaining authors disclose no conflicts.

18

Article

Additional information

Supplementary information The online version contains

supplementary material available at

https://doi.org/10.1038/s41467-023-41095-y.

Correspondence and requests for materials should be addressed to

Yuki Nakanishi.

Peer review information Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

A peer review file is available.

Reprints and permissions information is available at

http://www.nature.com/reprints

https://doi.org/10.1038/s41467-023-41095-y

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license, and indicate if

changes were made. The images or other third party material in this

article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2023

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Mayuki Omatsu1, Yuki Nakanishi 1 , Kosuke Iwane1, Naoki Aoyama1, Angeles Duran2, Yu Muta 2,12,

Anxo Martinez-Ordoñez2, Qixiu Han2, Nobukazu Agatsuma1, Kenta Mizukoshi1, Munenori Kawai1, Go Yamakawa1,

Mio Namikawa1, Kensuke Hamada1, Yuichi Fukunaga1,3, Takahiro Utsumi1, Makoto Sono1, Tomonori Masuda 1,

Akitaka Hata4, Osamu Araki1, Munemasa Nagao 1, Takaaki Yoshikawa1, Satoshi Ogawa 1, Yukiko Hiramatsu 1,

Motoyuki Tsuda1, Takahisa Maruno1, Toshiaki Kogame4, Hiroaki Kasashima 5, Nobuyuki Kakiuchi 1,6,

Masahiro M. Nakagawa 7, Kenji Kawada 8, Masakazu Yashiro5, Kiyoshi Maeda5, Yasuyuki Saito 9,

Takashi Matozaki 9,10, Akihisa Fukuda1, Kenji Kabashima 4, Kazutaka Obama8, Seishi Ogawa7, Nader Sheibani

Maria T. Diaz-Meco 2, Jorge Moscat 2 & Hiroshi Seno1

11

Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan. 2Department of Pathology and Laboratory

Medicine, Weill Cornell Medicine, New York, USA. 3Cancer Research Unit, Sumitomo Pharma Co., Ltd, Osaka, Japan. 4Department of Dermatology, Kyoto

University Graduate School of Medicine, Kyoto, Japan. 5Department of Gastroenterological Surgery, Osaka Metropolitan University, Osaka, Japan. 6The

Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan. 7Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan.

Department of Gastrointestinal Surgery, Kyoto University, Graduate School of Medicine, Kyoto, Japan. 9Division of Molecular and Cellular Signaling,

Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan. 10Division of Biosignal Regulation, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan. 11Department of Ophthalmology and Visual

Sciences, University of Wisconsin-, Madison, Wisconsin, USA. 12Present address: Department of Gastroenterology and Hepatology, Kyoto University Graduate

School of Medicine, Kyoto, Japan.

e-mail: yuki@kuhp.kyoto-u.ac.jp

Nature Communications | (2023)14:5534

19

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る