リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「IFI16 Induced by Direct Interaction between Esophageal Squamous Cell Carcinomas and Macrophages Promotes Tumor Progression via Secretion of IL-1α」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

IFI16 Induced by Direct Interaction between Esophageal Squamous Cell Carcinomas and Macrophages Promotes Tumor Progression via Secretion of IL-1α

Azumi, Yuki Koma, Yu-ichiro Tsukamoto, Shuichi Kitamura, Yu Ishihara, Nobuaki Yamanaka, Keitaro Nakanishi, Takashi Miyako, Shoji Urakami, Satoshi Tanigawa, Kohei Kodama, Takayuki Nishio, Mari Shigeoka, Manabu Kakeji, Yoshihiro Yokozaki, Hiroshi 神戸大学

2023.11

概要

Tumor-associated macrophages (TAMs), one of the major components of the tumor microenvironment, contribute to the progression of esophageal squamous cell carcinoma (ESCC). We previously established a direct co-culture system of human ESCC cells and macrophages and reported the promotion of malignant phenotypes, such as survival, growth, and migration, in ESCC cells. These findings suggested that direct interactions between cancer cells and macrophages contribute to the malignancy of ESCC, but its underlying mechanisms remain unclear. In this study, we compared the expression levels of the interferon-induced genes between mono- and co-cultured ESCC cells using a cDNA microarray and found that interferon-inducible protein 16 (IFI16) was most significantly upregulated in co-cultured ESCC cells. IFI16 knockdown suppressed malignant phenotypes and also decreased the secretion of interleukin-1α (IL-1α) from ESCC cells. Additionally, recombinant IL-1α enhanced malignant phenotypes of ESCC cells through the Erk and NF-κB signaling. Immunohistochemistry revealed that high IFI16 expression in human ESCC tissues tended to be associated with disease-free survival and was significantly associated with tumor depth, lymph node metastasis, and macrophage infiltration. The results of this study reveal that IFI16 is involved in ESCC progression via IL-1α and imply the potential of IFI16 as a novel prognostic factor for ESCC.

この論文で使われている画像

関連論文

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN

Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]

[PubMed]

Morgan, E.; Soerjomataram, I.; Rumgay, H.; Coleman, H.G.; Thrift, A.P.; Vignat, J.; Laversanne, M.; Ferlay, J.; Arnold, M. The

Global Landscape of Esophageal Squamous Cell Carcinoma and Esophageal Adenocarcinoma Incidence and Mortality in 2020

and Projections to 2040: New Estimates From GLOBOCAN 2020. Gastroenterology 2022, 163, 649–658.e2. [CrossRef] [PubMed]

Smyth, E.C.; Lagergren, J.; Fitzgerald, R.C.; Lordick, F.; Shah, M.A.; Lagergren, P.; Cunningham, D. Oesophageal Cancer. Nat. Rev.

Dis. Primers 2017, 3, 1–21. [CrossRef]

Kitagawa, Y.; Uno, T.; Oyama, T.; Kato, K.; Kato, H.; Kawakubo, H.; Kawamura, O.; Kusano, M.; Kuwano, H.; Takeuchi, H.; et al.

Esophageal Cancer Practice Guidelines 2017 Edited by the Japan Esophageal Society: Part 1. Esophagus 2019, 16, 1–24. [CrossRef]

Kitagawa, Y.; Uno, T.; Oyama, T.; Kato, K.; Kato, H.; Kawakubo, H.; Kawamura, O.; Kusano, M.; Kuwano, H.; Takeuchi, H.; et al.

Esophageal Cancer Practice Guidelines 2017 Edited by the Japan Esophageal Society: Part 2. Esophagus 2019, 16, 25–43. [CrossRef]

Kato, K.; Cho, B.C.; Takahashi, M.; Okada, M.; Lin, C.Y.; Chin, K.; Kadowaki, S.; Ahn, M.J.; Hamamoto, Y.; Doki, Y.; et al.

Nivolumab versus Chemotherapy in Patients with Advanced Oesophageal Squamous Cell Carcinoma Refractory or Intolerant

to Previous Chemotherapy (ATTRACTION-3): A Multicentre, Randomised, Open-Label, Phase 3 Trial. Lancet Oncol. 2019, 20,

1506–1517. [CrossRef]

Janjigian, Y.Y.; Shitara, K.; Moehler, M.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L.; Yamaguchi, K.; Skoczylas, T.; Campos

Bragagnoli, A.; et al. First-Line Nivolumab plus Chemotherapy versus Chemotherapy Alone for Advanced Gastric, GastroOesophageal Junction, and Oesophageal Adenocarcinoma (CheckMate 649): A Randomised, Open-Label, Phase 3 Trial. Lancet

2021, 398, 27–40. [CrossRef]

Özgüroglu,

M.; Kilickap, S.; Sezer, A.; Gümü¸s, M.; Bondarenko, I.; Gogishvili, M.; Nechaeva, M.; Schenker, M.; Cicin, I.; Ho,

G.F.; et al. First-Line Cemiplimab Monotherapy and Continued Cemiplimab beyond Progression plus Chemotherapy for

Advanced Non-Small-Cell Lung Cancer with PD-L1 50% or More (EMPOWER-Lung 1): 35-Month Follow-up from a Mutlicentre,

Open-Label, Randomised, Phase 3 Trial. Lancet Oncol. 2023, 24, 989–1001. [CrossRef]

Colombo, N.; Dubot, C.; Lorusso, D.; Caceres, M.V.; Hasegawa, K.; Shapira-Frommer, R.; Tewari, K.S.; Salman, P.; Hoyos Usta, E.;

Yañez, E.; et al. Pembrolizumab for Persistent, Recurrent, or Metastatic Cervical Cancer. N. Engl. J. Med. 2021, 385, 1856–1867.

[CrossRef] [PubMed]

Bagchi, S.; Yuan, R.; Engleman, E.G. Immune Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms

of Response and Resistance. Annu. Rev. Pathol. Mech. Dis. 2021, 16, 223–249. [CrossRef]

Komohara, Y.; Kurotaki, D.; Tsukamoto, H.; Miyasato, Y.; Yano, H.; Pan, C.; Yamamoto, Y.; Fujiwara, Y. Involvement of Protumor

Macrophages in Breast Cancer Progression and Characterization of Macrophage Phenotypes. Cancer Sci. 2023, 114, 2220–2229.

[PubMed]

Baba, Y.; Nomoto, D.; Okadome, K.; Ishimoto, T.; Iwatsuki, M.; Miyamoto, Y.; Yoshida, N.; Baba, H. Tumor Immune Microenvironment and Immune Checkpoint Inhibitors in Esophageal Squamous Cell Carcinoma. Cancer Sci. 2020, 111, 3132–3141.

[PubMed]

Sumitomo, R.; Huang, C.L.; Fujita, M.; Cho, H.; Date, H. Differential Expression of PD-L1 and PD-L2 Is Associated with the

Tumor Microenvironment of TILs and M2 TAMs and Tumor Differentiation in Non-Small Cell Lung Cancer. Oncol. Rep. 2022, 47,

1–11. [CrossRef]

Xiao, Y.; Yu, D. Tumor Microenvironment as a Therapeutic Target in Cancer. Pharmacol. Ther. 2021, 221, 107753. [PubMed]

Tsukamoto, H.; Komohara, Y.; Oshiumi, H. The Role of Macrophages in Anti-Tumor Immune Responses: Pathological Significance

and Potential as Therapeutic Targets. Hum. Cell 2021, 34, 1031–1039.

Shigeoka, M.; Urakawa, N.; Nakamura, T.; Nishio, M.; Watajima, T.; Kuroda, D.; Komori, T.; Kakeji, Y.; Semba, S.; Yokozaki,

H. Tumor Associated Macrophage Expressing CD204 Is Associated with Tumor Aggressiveness of Esophageal Squamous Cell

Carcinoma. Cancer Sci. 2013, 104, 1112–1119. [CrossRef]

Feng, A.; He, L.; Jiang, J.; Chu, Y.; Zhang, Z.; Fang, K.; Wang, Z.; Li, Z.; Sun, M.; Zhao, Z.; et al. Homeobox A7 Promotes

Esophageal Squamous Cell Carcinoma Progression through C-C Motif Chemokine Ligand 2-Mediated Tumor-Associated

Macrophage Recruitment. Cancer Sci. 2023, 114, 3270–3286. [CrossRef] [PubMed]

Chen, J.; Zhao, D.; Zhang, L.; Zhang, J.; Xiao, Y.; Wu, Q.; Wang, Y.; Zhan, Q. Tumor-Associated Macrophage (TAM)-Derived

CCL22 Induces FAK Addiction in Esophageal Squamous Cell Carcinoma (ESCC). Cell. Mol. Immunol. 2022, 19, 1054–1066.

[CrossRef]

Fujikawa, M.; Koma, Y.; Hosono, M.; Urakawa, N.; Tanigawa, K.; Shimizu, M.; Kodama, T.; Sakamoto, H.; Nishio, M.; Shigeoka,

M.; et al. Chemokine (C-C Motif) Ligand 1 Derived from Tumor-Associated Macrophages Contributes to Esophageal Squamous

Cell Carcinoma Progression via CCR8-Mediated Akt/Proline-Rich Akt Substrate of 40 KDa/Mammalian Target of Rapamycin

Pathway. Am. J. Pathol. 2021, 191, 686–703. [CrossRef]

Tanigawa, K.; Tsukamoto, S.; Koma, Y.; Kitamura, Y.; Urakami, S.; Shimizu, M.; Fujikawa, M.; Kodama, T.; Nishio, M.; Shigeoka,

M.; et al. S100A8/A9 Induced by Interaction with Macrophages in Esophageal Squamous Cell Carcinoma Promotes the Migration

and Invasion of Cancer Cells via Akt and P38 MAPK Pathways. Am. J. Pathol. 2022, 192, 536–552. [CrossRef]

Cells 2023, 12, 2603

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

17 of 18

Kitamura, Y.; Koma, Y.I.; Tanigawa, K.; Tsukamoto, S.; Azumi, Y.; Miyako, S.; Urakami, S.; Kodama, T.; Nishio, M.; Shigeoka, M.;

et al. Roles of IL-7R Induced by Interactions between Cancer Cells and Macrophages in the Progression of Esophageal Squamous

Cell Carcinoma. Cancers 2023, 15, 394. [CrossRef]

Tsukamoto, S.; Koma, Y.I.; Kitamura, Y.; Tanigawa, K.; Azumi, Y.; Miyako, S.; Urakami, S.; Hosono, M.; Kodama, T.; Nishio, M.;

et al. Matrix Metalloproteinase 9 Induced in Esophageal Squamous Cell Carcinoma Cells via Close Contact with Tumor-Associated

Macrophages Contributes to Cancer Progression and Poor Prognosis. Cancers 2023, 15, 2987. [CrossRef]

Holicek, P.; Guilbaud, E.; Klapp, V.; Truxova, I.; Spisek, R.; Galluzzi, L.; Fucikova, J. Type I Interferon and Cancer. Immunol. Rev. 2023.

[CrossRef]

Saleiro, D.; Platanias, L.C. Interferon Signaling in Cancer. Non-Canonical Pathways and Control of Intra-cellular Immune

Checkpoints. Semin. Immunol. 2019, 43, 101299. [PubMed]

Ludlow, L.E.A.; Johnstone, R.W.; Clarke, C.J.P. The HIN-200 Family: More than Interferon-Inducible Genes? Exp. Cell Res. 2005,

308, 1–17. [PubMed]

Wang, Z.; Sheng, B.; Wei, Z.; Li, Y.; Liu, Z. Identification of a Metastasis-Related Protein IFI16 in Esophageal Cancer Using a

Proteomic Approach. J. Cancer 2022, 13, 1630–1639. [CrossRef] [PubMed]

Han, C.; Godfrey, V.; Liu, Z.; Han, Y.; Liu, L.; Peng, H.; Weichselbaum, R.R.; Zaki, H.; Fu, Y.-X. The AIM2 and NLRP3

Inflammasomes Trigger IL-1-Mediated Antitumor Effects during Radiation. Sci. Immunol. 2021, 6, eabc6998.

Ge, D.; Chen, H.; Zheng, S.; Zhang, B.; Ge, Y.; Yang, L.; Cao, X. Hsa-MiR-889-3p Promotes the Proliferation of Osteosarcoma

through Inhibiting Myeloid Cell Nuclear Differentiation Antigen Expression. Biomed. Pharmacother. 2019, 114, 108819. [CrossRef]

Wang, S.; Li, F.; Fan, H. Interferon-Inducible Protein, IFIX, Has Tumor-Suppressive Effects in Oral Squamous Cell Carcinoma. Sci.

Rep. 2021, 11, 19593. [CrossRef]

Japan Esophageal Society. Japanese Classification of Esophageal Cancer, Tenth Edition: Part I. Esophagus 2009, 6, 1–25. [CrossRef]

Japan Esophageal Society. Japanese Classification of Esophageal Cancer, Tenth Edition: Parts II and III. Esophagus 2009, 6, 71–94.

[CrossRef]

Sobin, L.H.; Gospodarowicz, M.K.; Wittekind, C. TNM Classification of Malignant Tumours, 7th ed.; Wiley-Blackwell: Hoboken, NJ,

USA, 2011.

Lin, W.; Zhao, Z.; Ni, Z.; Zhao, Y.; Du, W.; Chen, S. IFI16 Restoration in Hepatocellular Carcinoma Induces Tumour Inhibition via

Activation of P53 Signals and Inflammasome. Cell Prolif. 2017, 50, e12392. [CrossRef] [PubMed]

Chen, J.X.; Cheng, C.S.; Gao, H.F.; Chen, Z.J.; Lv, L.L.; Xu, J.Y.; Shen, X.H.; Xie, J.; Zheng, L. Overexpression of Interferon-Inducible

Protein 16 Promotes Progression of Human Pancreatic Adenocarcinoma Through Interleukin-1β-Induced Tumor-Associated

Macrophage Infiltration in the Tumor Microenvironment. Front. Cell Dev. Biol. 2021, 9, 640786. [CrossRef]

Unterholzner, L.; Keating, S.E.; Baran, M.; Horan, K.A.; Jensen, S.B.; Sharma, S.; Sirois, C.M.; Jin, T.; Latz, E.; Xiao, T.S.; et al. IFI16

Is an Innate Immune Sensor for Intracellular DNA. Nat. Immunol. 2010, 11, 997–1004. [CrossRef] [PubMed]

Li, D.; Xie, L.; Qiao, Z.; Zhu, J.; Yao, H.; Qin, Y.; Yan, Y.; Chen, Z.; Ma, F. IFI16 Isoforms with Cytoplasmic and Nuclear Locations

Play Differential Roles in Recognizing Invaded DNA Viruses. J. Immunol. 2021, 207, 2699–2709. [CrossRef]

Gariano, G.R.; Dell’Oste, V.; Bronzini, M.; Gatti, D.; Luganini, A.; de Andrea, M.; Gribaudo, G.; Gariglio, M.; Landolfo, S. The

Intracellular DNA Sensor IFI16 Gene Acts as Restriction Factor for Human Cytomegalovirus Replication. PLoS Pathog. 2012,

8, e1002498. [CrossRef]

Kerur, N.; Veettil, M.V.; Sharma-Walia, N.; Bottero, V.; Sadagopan, S.; Otageri, P.; Chandran, B. IFI16 Acts as a Nuclear Pathogen

Sensor to Induce the Inflammasome in Response to Kaposi Sarcoma-Associated Herpesvirus Infection. Cell Host Microbe 2011, 9,

363–375. [CrossRef] [PubMed]

Caneparo, V.; Cena, T.; De Andrea, M.; Dell’Oste, V.; Stratta, P.; Quaglia, M.; Tincani, A.; Andreoli, L.; Ceffa, S.; Taraborelli, M.;

et al. Anti-IFI16 Antibodies and Their Relation to Disease Characteristics in Systemic Lupus Erythematosus. Lupus 2013, 22,

607–613. [CrossRef]

Caneparo, V.; Pastorelli, L.; Pisani, L.F.; Bruni, B.; Prodam, F.; Boldorini, R.; Roggenbuck, D.; Vecchi, M.; Landolfo, S.; Gariglio, M.;

et al. Distinct Anti-IFI16 and Anti-GP2 Antibodies in Inflammatory Bowel Disease and Their Variation with Infliximab Therapy.

Inflamm. Bowel Dis. 2016, 22, 2977–2987. [CrossRef]

Alunno, A.; Caneparo, V.; Bistoni, O.; Caterbi, S.; Terenzi, R.; Gariglio, M.; Bartoloni, E.; Manzo, A.; Landolfo, S.; Gerli, R.

Circulating Interferon-Inducible Protein IFI16 Correlates with Clinical and Serological Features in Rheumatoid Arthritis. Arthritis

Care Res. 2016, 68, 440–445. [CrossRef]

Choubey, D.; Panchanathan, R. IFI16, an Amplifier of DNA-Damage Response: Role in Cellular Senescence and Aging-Associated

Inflammatory Diseases. Ageing Res. Rev. 2016, 28, 27–36. [CrossRef] [PubMed]

Jønsson, K.L.; Laustsen, A.; Krapp, C.; Skipper, K.A.; Thavachelvam, K.; Hotter, D.; Egedal, J.H.; Kjolby, M.; Mohammadi, P.;

Prabakaran, T.; et al. IFI16 Is Required for DNA Sensing in Human Macrophages by Promoting Production and Function of

CGAMP. Nat. Commun. 2017, 8, 14391. [CrossRef]

Piccaluga, P.P.; Agostinelli, C.; Fuligni, F.; Righi, S.; Tripodo, C.; Re, M.C.; Clò, A.; Miserocchi, A.; Morini, S.; Gariglio, M.; et al.

IFI16 Expression Is Related to Selected Transcription Factors during B-Cell Differentiation. J. Immunol. Res. 2015, 2015, 747645.

[CrossRef] [PubMed]

Wei, W.; Clarke, C.J.P.; Somers, G.R.; Cresswell, K.S.; Loveland, K.A.; Trapani, J.A.; Johnstone, R.W. Expression of IFI 16 in

Epithelial Cells and Lymphoid Tissues. Histochem. Cell Biol. 2003, 119, 45–54. [CrossRef]

Cells 2023, 12, 2603

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

18 of 18

Liao, J.C.C.; Lam, R.; Brazda, V.; Duan, S.; Ravichandran, M.; Ma, J.; Xiao, T.; Tempel, W.; Zuo, X.; Wang, Y.X.; et al. InterferonInducible Protein 16: Insight into the Interaction with Tumor Suppressor P53. Structure 2011, 19, 418–429. [CrossRef]

Ka, N.L.; Lim, G.Y.; Hwang, S.; Kim, S.S.; Lee, M.O. IFI16 Inhibits DNA Repair That Potentiates Type-I Interferon-Induced

Antitumor Effects in Triple Negative Breast Cancer. Cell Rep. 2021, 37, 110138. [CrossRef] [PubMed]

He, L.; Xiao, X.; Yang, X.; Zhang, Z.; Wu, L.; Liu, Z. STING Signaling in Tumorigenesis and Cancer Therapy: A Friend or Foe?

Cancer Lett. 2017, 402, 203–212. [CrossRef]

Xu, S.; Li, X.; Liu, Y.; Xia, Y.; Chang, R.; Zhang, C. Inflammasome Inhibitors: Promising Therapeutic Approaches against Cancer.

J. Hematol. Oncol. 2019, 12, 64. [CrossRef]

Dunn, G.P.; Sheehan, K.C.F.; Old, L.J.; Schreiber, R.D. IFN Unresponsiveness in LNCaP Cells Due to the Lack of JAK1 Gene

Expression. Cancer Res. 2005, 65, 3447–3453. [CrossRef]

Zhang, F.; Yuan, Y.; Ma, F. Function and Regulation of Nuclear DNA Sensors During Viral Infection and Tumorigenesis. Front.

Immunol. 2021, 11, 624556. [CrossRef]

Alimirah, F.; Chen, J.; Davis, F.J.; Choubey, D. IFI16 in Human Prostate Cancer. Mol. Cancer Res. 2007, 5, 251–259. [CrossRef]

[PubMed]

Kim, E.J.; Park, J.I.; Nelkin, B.D. IFI16 Is an Essential Mediator of Growth Inhibition, but Not Differentiation, Induced by the

Leukemia Inhibitory Factor/JAK/STAT Pathway in Medullary Thyroid Carcinoma Cells. J. Biol. Chem. 2005, 280, 4913–4920.

[CrossRef]

Cai, H.; Yan, L.; Liu, N.; Xu, M.; Cai, H. IFI16 Promotes Cervical Cancer Progression by Upregulating PD-L1 in Immunomicroenvironment through STING-TBK1-NF-KB Pathway. Biomed. Pharmacother. 2020, 123, 109790. [CrossRef] [PubMed]

Lim, G.Y.; Cho, S.W.; Ka, N.L.; Lee, K.H.; Im, S.A.; Kim, S.S.; Hwang, S.; Lee, M.O. IFI16/Ifi202 Released from Breast Cancer

Induces Secretion of Inflammatory Cytokines from Macrophages and Promotes Tumor Growth. J. Cell. Physiol. 2023, 238,

1507–1519. [CrossRef] [PubMed]

Yu, B.; Zheng, X.; Sun, Z.; Cao, P.; Zhang, J.; Wang, W. IFI16 Can Be Used as a Biomarker for Diagnosis of Renal Cell Carcinoma

and Prediction of Patient Survival. Front. Genet. 2021, 12, 599952. [CrossRef] [PubMed]

Smatlik, N.; Drexler, S.K.; Burian, M.; Röcken, M.; Yazdi, A.S. ASC Speck Formation after Inflammasome Activation in Primary

Human Keratinocytes. Oxid. Med. Cell. Longev. 2021, 2021, 1–13. [CrossRef] [PubMed]

Garlanda, C.; Dinarello, C.A.; Mantovani, A. The Interleukin-1 Family: Back to the Future. Immunity 2013, 39, 1003–1018.

[CrossRef]

Weber, A.; Wasiliew, P.; Kracht, M. Interleukin-1 (IL-1) pathway. Sci. Signal. 2010, 3, cm1. [CrossRef]

Kawaguchi, Y.; Hara, M.; Wright, T.M. Endogenous IL-1α from Systemic Sclerosis Fibroblasts Induces IL-6 and PDGF-A. J. Clin.

Investig. 1999, 103, 1253–1260. [CrossRef]

Douvdevani, A.; Huleihel, M.; Zöller, M.; Segal, S.; Apte, R.N. Reduced Tumorigenicity of Fibrosarcomas Which Constitutively

Generate Il-1α Either Spontaneously or Following Il-1α Gene Transfer. Int. J. Cancer 1992, 51, 822–830. [CrossRef]

Dagenais, M.; Dupaul-Chicoine, J.; Douglas, T.; Champagne, C.; Morizot, A.; Saleh, M. The Interleukin (IL)-1R1 Pathway Is a

Critical Negative Regulator of PyMT-Mediated Mammary Tumorigenesis and Pulmonary Metastasis. Oncoimmunology 2017,

6, 1287247. [CrossRef]

Lin, D.; Mei, Y.; Lei, L.; Binte Hanafi, Z.; Jin, Z.; Liu, Y.; Song, Y.; Zhang, Y.; Hu, B.; Liu, C.; et al. Immune Suppressive Function of

IL-1α Release in the Tumor Microenvironment Regulated by Calpain 1. Oncoimmunology 2022, 11, 2088467. [CrossRef] [PubMed]

Chen, S.; Shen, Z.; Liu, Z.; Gao, L.; Han, Z.; Yu, S.; Kang, M. IL-1RA Suppresses Esophageal Cancer Cell Growth by Blocking

IL-1α. J. Clin. Lab. Anal. 2019, 33, e22903. [CrossRef] [PubMed]

Watari, K.; Shibata, T.; Kawahara, A.; Sata, K.I.; Nabeshima, H.; Shinoda, A.; Abe, H.; Azuma, K.; Murakami, Y.; Izumi, H.; et al.

Tumor-Derived Interleukin-1 Promotes Lymphangiogenesis and Lymph Node Metastasis through M2-Type Macrophages. PLoS

ONE 2014, 9, e99568. [CrossRef] [PubMed]

Murakami, Y.; Watari, K.; Shibata, T.; Uba, M.; Ureshino, H.; Kawahara, A.; Abe, H.; Izumi, H.; Mukaida, N.; Kuwano, M.; et al.

N-Myc Downstream-Regulated Gene 1 Promotes Tumor Inflammatory Angiogenesis through JNK Activation and Autocrine

Loop of Interleukin-1α by Human Gastric Cancer Cells. J. Biol. Chem. 2013, 288, 25025–25037. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る