リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Toward Tungsten Electrodeposition at Moderate Temperatures Below 100 °C Using Chloroaluminate Ionic Liquids」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Toward Tungsten Electrodeposition at Moderate Temperatures Below 100 °C Using Chloroaluminate Ionic Liquids

Higashino, Shota Takeuchi, Yoshikazu Miyake, Masao Sakai, Takuma Ikenoue, Takumi Tane, Masakazu Hirato, Tetsuji 京都大学 DOI:10.1149/1945-7111/accfc4

2023.05

概要

The electrodeposition of tungsten at moderate temperatures (<100 °C) has been of significant interest for the fabrication of thin films and microelectromechanical system components to decrease energy consumption and increase process safety. In this study, we investigated the electrochemical reduction of WCl₄ and WCl₅ in 1-ethyl-3-methylimidazolium chloride (EMIC) and EMIC–AlCl₃ ionic liquids at 80 °C–120 °C. W-rich films with a thickness of approximately 1 μm were obtained from the Lewis acidic EMIC–AlCl₃–WCl₅ bath, whereas the other baths did not yield any deposits. The films obtained from the EMIC–AlCl₃–WCl₅ bath at 80 °C had higher W contents of 54 at.% than those obtained at 120 °C. X-ray absorption near-edge structure spectra of the W-rich films indicated that W existed in an oxidized state. The findings of this study can be used as a guide to explore optimal electrolytes and electrolytic conditions for the electrodeposition of metallic W at moderate temperatures.

この論文で使われている画像

参考文献

1. X. Meng, Y. Norikawa, and T. Nohira, Electrochem. Commun., 132, 107139 (2021).

2. H. Nakajima et al., Electrochim. Acta, 53, 24–27 (2007).

3. K. Nitta et al., Electrochim. Acta, 53, 20–23 (2007).

4. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, National

Association of Corrosion Engineers, (1974).

5. S. Senderoff and G. W. Mellors, J. Electrochem. Soc., 114, 586 (1967).

6. A. Katagiri, M. Suzuki, and Z. Takehara, J. Electrochem. Soc., 138, 767–773 (1991).

7. M. Masuda, H. Takenishi, and A. Katagiri, J. Electrochem. Soc., 148, C59 (2001).

8. T. Nohira, T. Ide, X. Meng, Y. Norikawa, and K. Yasuda, J. Electrochem. Soc., 168, 046505

(2021).

9. H. Nakajima, T. Nohira, and R. Hagiwara, Electrochem. Solid-State Lett., 8, C91 (2005).

10. V. V. Malyshev, Prot. Met. Phys. Chem. Surf., 45, 373–390 (2009).

11. O. Takeda, S. Watanabe, C. Iseki, X. Lu, and H. Zhu, J. Electrochem. Soc., 169, 122503

(2022).

12. Y. Norikawa, X. Meng, K. Yasuda, and T. Nohira, J. Electrochem. Soc., 169, 102506

(2022).

13. K. Nitta, T. Nohira, R. Hagiwara, M. Majima, and S. Inazawa, Electrochim. Acta, 55, 1278–

1281 (2010).

14. T. B. Scheffler and C. L. Hussey, Inorg. Chem., 23, 1926–1932 (1984)

http://dx.doi.org/10.1021/ic00181a027.

15. A. G. Cavinato, G. Mamantov, and X. B. Cox, J. Electrochem. Soc., 132, 1136–1140 (1985).

17

16. E. M. Levin, J. F. Kinney, R. D. Wells, and J. T. Benedict, J. Res. Natl. Bur. Stand., A.

Phys. Chem., 78A, 505–507 (1974).

17. T. Tsuda et al., J. Electrochem. Soc., 161, D405–D412 (2014).

18. S. Higashino, M. Miyake, H. Fujii, A. Takahashi, and T. Hirato, J. Electrochem. Soc., 164,

D120–D125 (2017).

19. R. C. Howie and D. W. Macmillan, Inorg. Nucl. Chem. Letters, 6, 399–401 (1970).

20. T. Tsuda et al., J. Electrochem. Soc., 161, D405–D412 (2014).

21. T. Tsuda, C. L. Hussey, and G. R. Stafford, J. Electrochem. Soc., 151, C379–C384 (2004).

22. B. Ravel and M. Newville, J. Synchrotron Radiat., 12, 537–541 (2005).

23. A. A. Fannin et al., Journal of Physical Chemistry, 88, 2614–2621 (1984).

24. P. Giridhar, B. Weidenfeller, S. Z. El Abedin, and F. Endres, Phys. Chem. Chem. Phys., 16,

9317–9326 (2014).

25. A. Radisic, F. M. Ross, and P. C. Searson, J. Phys. Chem. B, 110, 7862–7868 (2006).

26. L. Wang et al., Acta Metall. Sin. (Engl. Lett.), 28, 381–385 (2015).

27. T. Tsuda et al., ECS Trans., 50, 239–250 (2013).

28. S. Higashino et al., J. Electroanal. Chem., 912, 116238 (2022).

29. I. ‐Wen Sun, A. G. Edwards, and G. Mamantov, J. Electrochem. Soc., 140, 2733–2739

(1993).

30. T. Nohira, T. Ide, X. Meng, Y. Norikawa, and K. Yasuda, J. Electrochem. Soc., 168, 46505

(2021).

31. D. F. Roeper, K. I. Pandya, G. T. Cheek, and W. E. O’Grady, J. Electrochem. Soc., 158,

F21–F28 (2011).

18

32. Z. Ke et al., Ceram. Int., 46, 12767–12772 (2020).

33. E. Gunnell et al., J. Electrochem. Soc., 168, 046501 (2021).

19

Supplementary Materials

Toward Tungsten Electrodeposition at Moderate Temperatures Below 100 °C Using

Chloroaluminate Ionic Liquids

Shota Higashino,1,2,* Yoshikazu Takeuchi,2 Masao Miyake,2 Takuma Sakai1, Takumi Ikenoue,2

Masakazu Tane,1 and Tetsuji Hirato2

1Graduate

School of Engineering, Osaka Metropolitan University, Sugimoto, Sumiyoshi-ku, Osaka

558-8585, Japan

2Graduate

School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-

8501, Japan

*Corresponding Author: higashino@omu.ac.jp

Results and discussion

Supplementary Figure S1. (a) SEM image of the Cu electrode surface after

potentiostatic electrolysis in the EMIC–AlCl3–WCl5 bath at +0.1 V and 80 °C. (b) EDX

spectrum for the dotted area in (a), where the deposits were completely exfoliated.

Supplementary Figure S2. (a) SEM image and (b) EDX spectrum of the Ni electrode

surface after potentiostatic electrolysis in the EMIC–AlCl3–WCl5–KF bath at +0.1 V and

80 °C.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る