リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Evaluation of 3D printed buckyball-shaped cathodes of titanium and stainless-steel for IEC fusion system」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Evaluation of 3D printed buckyball-shaped cathodes of titanium and stainless-steel for IEC fusion system

Bakr, Mahmoud Wulfkühler, Jan-Philipp Mukai, Keisuke Masuda, Kai Tajmar, Martin Konishi, Satoshi 京都大学 DOI:10.1063/5.0033342

2021

概要

An inertial electrostatic confinement (IEC) fusion device accelerates ions, such as deuterium (D) or tritium (T), to produce nuclear fusion and generate neutrons. The IEC's straightforward configuration consists of a concentric spherical transparent cathode at a negative bias surrounded by a grounded spherical anode. The effects of cathode properties on the neutron production rate (NPR) remain, to date, inadequately studied. This study aims to determine the impact of the cathode material on the NPR by investigating fusion reactions on the cathode surface. Two buckyball-shaped cathodes made of stainless steel (SS) and titanium (Ti), both of 5 cm diameter, fabricated by selective laser melting and 3D printing, are used for this investigation. A SS spherical chamber of 25 cm inner diameter is used as an anode in this experiment. A performance evaluation of surface fusion reaction in the IEC using SS and Ti grids is conducted by examining the NPR as a function of the applied voltage and grid currents at different gas pressures. So far, IEC with Ti and SS cathodes achieves NPRs of 2.32 and 1.41 × 10⁷n/s, respectively, at 5.6 kW (70 kV, 80 mA). The normalized NPRs (NPR/I-cathode) from IEC using SS and Ti cathodes are compared. The results demonstrate that fusion reaction occurs on the cathode surface, and fusion increases with the applied voltage. The measured NPR/I-cathode using the Ti cathode is higher than that of the SS cathode by factors of 1.36–1.64 across the 20–70 kV range. Moreover, fusion on the Ti cathode surface enhances the total NPR significantly compared to the SS cathode under the same conditions. The Ti's considerable ability to accumulate D ions and molecules compared with that of SS explains the difference of measured NPR results.

この論文で使われている画像

参考文献

W. C. Elmore, J. L. Tuck, and K. M. Watson, Phys. Fluids 2, 239 (1959).

P. T. Farnsworth, U.S. patent 2,358,402 (June 1966).

R. L. Hirsch, J. Appl. Phys. 38, 4522 (1967).

K. Noborio, T. Sakai, and Y. Yamamoto, in Proceedings-Symposium Fusion

Engineering (2003), pp. 328–331.

K. Yamauchi, S. Ohura, M. Watanabe, A. Okino, T. Kohno, E. Hotta, and M.

Yuura, Performance of Neutron/Proton Source Based on Ion-Source-Assisted

Cylindrical Radially Convergent Beam Fusion (The Institute of Electrical

Engineers of Japan, 2006), pp. 1177–1182.

K. Noborio, Y. Yamamoto, and S. Konishi, Fusion Sci. Technol. 52, 1105

(2007).

Y. Takahashi, T. Misawa, K. Masuda, K. Yoshikawa, T. Takamatsu, K. Yamauchi,

T. Yagi, C. Ho Pyeon, and S. Shiroya, Appl. Radiat. Isot. 68, 2327 (2010).

J. Hedditch, R. Bowden-Reid, and J. Khachan, Phys. Plasmas 22, 102705

(2015).

M. K. Michalak, A. N. Fancher, G. L. Kulcinski, and J. F. Santarius, Fusion Sci.

Technol. 72, 449 (2017).

10

K. Masuda, R. Kashima, and M. A. Bakr, Fusion Sci. Technol. 75, 608 (2019).

11

M. Bakr, K. Masuda, and M. Yoshida, Fusion Sci. Technol. 75, 479 (2019).

12

S. Mukai, K. Ogino, Y. Yagi, and J. Konishi, IEEE Trans. Plasma Sci. 48(6),

1831 (2020).

13

N. Ranson, V. Pigeon, N. Claire, and J. Khachan, Phys. Plasmas 27, 103501

(2020).

14

Y. Takahashi, T. Misawa, C. H. Pyeon, S. Shiroya, and K. Yoshikawa, Appl.

Radiat. Isot. 69, 1027 (2011).

15

Y. Nakai, K. Noborio, Y. Takeuchi, R. Kasada, Y. Yamamoto, and S. Konishi,

Fusion Sci. Technol. 64, 379 (2013).

16

G. H. Miley, H. Momota, H. Leon, B. Ulmen, G. Amadio, A. Khan, G. Chen,

W. Matisiak, A. Azeem, and P. Keutelian, J. Eng. Gas Turbines Power 133,

124502 (2011).

17

R. Bowden-Reid, J. Khachan, J. P. Wulfk€

uhler, and M. Tajmar, Phys. Plasmas

25, 112702 (2018).

18

D. C. Donovan, D. R. Boris, G. L. Kulcinski, and J. F. Santarius, Fusion Sci.

Technol. 56, 507 (2009).

19

K. Yoshikawa, K. Masuda, T. Takamatsu, S. Shiroya, T. Misawa, E. Hotta, M.

Ohnishi, K. Yamauchi, H. Osawa, and Y. Takahashi, Nucl. Instrum. Methods

Phys. Res., Sect. B 261, 299 (2007).

28, 012706-7

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Physics of Plasmas

20

B. J. Egle, J. F. Santarius, and G. L. Kulcinski, Fusion Sci. Technol. 52, 1110

(2007).

21

J. Rasmussen, T. Jensen, S. B. Korsholm, N. E. Kihm, F. K. Ohms, M.

Gockenbach, B. S. Schmidt, and E. Goss, Phys. Plasmas 27, 083515 (2020).

22

M. Bakr, K. Masuda, and M. Yoshida, AIP Conf. Proc. 2160, 030004 (2019).

23

J.-P. Wulfkuehler and M. Tajmar, in 52nd AIAA/SAE/ASEE Joint Propulsion

Conference (American Institute of Aeronautics and Astronautics, Reston,

Virginia, 2016).

24

J. Kipritidis, J. Khachan, M. Fitzgerald, and O. Shrier, Phys. Rev. E 77, 066405

(2008).

25

J. Khachan and S. Collis, Phys. Plasmas 8, 1299 (2001).

26

J. Kipritidis and J. Khachan, Phys. Rev. E 79, 026403 (2009).

27

D. R. Boris and G. A. Emmert, Phys. Plasmas 15, 083502 (2008).

Phys. Plasmas 28, 012706 (2021); doi: 10.1063/5.0033342

Published under license by AIP Publishing

ARTICLE

scitation.org/journal/php

28

R. L. Hirsch, Phys. Fluids 11, 2486 (1968).

P. W. Tamm and L. D. Schmidt, J. Chem. Phys. 55, 4253 (1971).

30

K. Christmann, O. Schober, G. Ertl, and M. Neumann, J. Chem. Phys. 60, 4528

(1974).

31

A. Y. Didyk, R. Wisniewski, K. Kitowski, V. Kulikauskas, T. Wilczynska, A.

Hofman, A. A. Shiryaev, and Y. V. Zubavichus, Phys. Part. Nucl. Lett. 9, 86

(2012).

32

W. Espe, Electronics (2016), see https://vacaero.com/information-resources/

vac-aero-training/1166-getter-materials.html.

33

J. P. Biersack and L. G. Haggmark, Nucl. Instrum. Methods 174, 257 (1980).

34

Q. Zhou, A. Togari, M. Nakata, M. Zhao, F. Sun, M. Yajima, M. Tokitani, S.

Masuzaki, N. Yoshida, M. Hara, Y. Hatano, and Y. Oya, Int. J. Hydrogen

Energy 45, 9959 (2020).

29

28, 012706-8

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る