リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Identification and characterization of slow‑cycling cells in Ewing sarcoma」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Identification and characterization of slow‑cycling cells in Ewing sarcoma

Yahiro, Shunsuke Kawamoto, Teruya Fujiwara, Shuichi Hara, Hitomi Fukase, Naomasa Sawada, Ryoko Takemori, Toshiyuki Miyamoto, Tomohiro Mifune, Yutaka Kakutani, Kenichiro Hoshino, Yuichi Hayashi, Shinya Matsumoto, Tomoyuki Matsushita, Takehiko Koyanagi-Aoi, Michiyo Aoi, Takashi Kuroda, Ryosuke Akisue, Toshihiro 神戸大学

2022.11

概要

Ewing sarcoma (ES) is an aggressive primary malignant bone tumor that predominantly affects children and young adults. Multimodal treatment approaches have markedly improved the survival of patients with localized ES. However, local recurrence and distant metastasis following curative therapies remain a main concern for patients with ES. Recent studies have suggested that slow‑cycling cells (SCCs) are associated with tumor progression, local recurrence and distant metastasis in various types of cancers. According to the results of these studies, it was hypothesized that SCCs may play a critical role in tumor progression, chemoresistance and local/distal recurrence in patients with ES. The present study applied a label‑retaining system using carboxyfluorescein diacetate succinimidyl ester (CFSE) to identify and isolate SCCs in ES cell lines. In addition, the properties of SCCs, including sphere formation ability, cell cycle distribution and chemoresistance, in comparison with non‑SCCs were investigated. RNA sequencing also revealed several upregulated genes in SCCs as compared with non‑SCCs; the identified genes not only inhibited cell cycle progression, but also promoted the malignant properties of SCCs. On the whole, the present study successfully identified SCCs in ES cells through a label‑retaining system using CFSE. Moreover, to the best of our knowledge, the present study is the first to describe the characteristic properties of SCCs in ES. The findings of this study, if confirmed, may prove to be useful in elucidating the underlying molecular mechanisms and identifying effective therapeutic targets for ES.

この論文で使われている画像

参考文献

1. Balamuth NJ and Womer RB: Ewing's sarcoma. Lancet Oncol 11: 184‑192, 2010.

2. Damron TA, Ward WG and Stewart A: Osteosarcoma, chondro‑ sarcoma, and Ewing's sarcoma: National cancer data base report. Clin Orthop Relat Res 459: 40‑47, 2007.

3. Potratz J, Dirksen U, Jürgens H and Craft A: Ewing sarcoma: Clinical state‑of‑the‑art. Pediatr Hematol Oncol 29: 1‑11, 2012.

4. Gaspar N, Hawkins DS, Dirksen U, Lewis IJ, Ferrari S, Le Deley MC, Kovar H, Grimer R, Whelan J, Claude L, et al: Ewing sarcoma: Current management and future approaches through collaboration. J Clin Oncol 33: 3036‑3046, 2015.

5. Rodríguez‑Galindo C, Liu T, Krasin MJ, Wu J, Billups CA, Daw NC, Spunt SL, Rao BN, Santana VM and Navid F: Analysis of prognostic factors in Ewing sarcoma family of tumors: Review of St. Jude children's research hospital studies. Cancer 110: 375‑384, 2007.

6. Paulussen M, Ahrens S, Dunst J, Winkelmann W, Exner GU, Kotz R, Amann G, Dockhorn‑Dworniczak B, Harms D, Müller‑Weihrich S, et al: Localized Ewing tumor of bone: Final results of the cooperative Ewing's sarcoma study CESS 86. J Clin Oncol 19: 1818‑1829, 2001.

7. Granowetter L, Womer R, Devidas M, Krailo M, Wang C, Bernstein M, Marina N, Leavey P, Gebhardt M, Healey J, et al: Dose‑intensified compared with standard chemotherapy for nonmetastatic Ewing sarcoma family of tumors: A children's oncology group study. J Clin Oncol 27: 2536‑2541, 2009.

8. Bacci G, Ferrari S, Longhi A, Donati D, De Paolis M, Forni C, Versari M, Setola E, Briccoli A and Barbieri E: Therapy and survival after recurrence of Ewing's tumors: The Rizzoli expe‑ rience in 195 patients treated with adjuvant and neoadjuvant chemotherapy from 1979 to 1997. Ann Oncol 14: 1654‑1659, 2003.

9. Barker LM, Pendergrass TW, Sanders JE and Hawkins DS: Survival after recurrence of Ewing's sarcoma family of tumors. J Clin Oncol 23: 4354‑4362, 2005.

10. Stahl M, Ranft A, Paulussen M, Bölling T, Vieth V, Bielack S, Görtitz I, Braun‑Munzinger G, Hardes J, Jürgens H and Dirksen U: Risk of recurrence and survival after relapse in patients with Ewing sarcoma. Pediatr Blood Cancer 57: 549‑553, 2011.

11. Marusyk A and Polyak K: Tumor heterogeneity: Causes and consequences. Biochim Biophys Acta 1805: 105‑117, 2010.

12. Shen S, Vagner S and Robert C: Persistent cancer cells: The deadly survivors. Cell 183: 860‑874, 2020.

13. Basu S, Dong Y, Kumar R, Jeter C and Tang DG: Slow‑cycling (dormant) cancer cells in therapy resistance, cancer relapse and metastasis. Semin Cancer Biol 78: 90‑103, 2022.

14. Davis JE Jr, Kirk J, Ji Y and Tang DG: Tumor dormancy and slow‑cycling cancer cells. Adv Exp Med Biol 1164: 199‑206, 2019.

15. Roesch A, Fukunaga‑Kalabis M, Schmidt EC, Zabierowski SE, Brafford PA, Vultur A, Basu D, Gimotty P, Vogt T and Herlyn M: A temporarily distinct subpopulation of slow‑cycling melanoma cells is required for continuous tumor growth. Cell 141: 583‑594, 2010.

16. Perego M, Maurer M, Wang JX, Shaffer S, Müller AC, Parapatics K, Li L, Hristova D, Shin S, Keeney F, et al: A slow‑cycling subpopulation of melanoma cells with highly inva‑ sive properties. Oncogene 37: 302‑312, 2018.

17. Moore N, Houghton J and Lyle S: Slow‑cycling therapy‑resistant cancer cells. Stem Cells Dev 21: 1822‑1830, 2012.

18. Zeng L, Zhao Y, Ouyang T, Zhao T, Zhang S, Chen J, Yu J and Lei T: Label‑retaining assay enriches tumor‑initiating cells in glioblastoma spheres cultivated in serum‑free medium. Oncol Lett 12: 815‑824, 2016.

19. Ebinger S, Özdemir EZ, Ziegenhain C, Tiedt S, Castro Alves C, Grunert M, Dworzak M, Lutz C, Turati VA, Enver T, et al: Characterization of rare, dormant, and therapy‑resistant cells in acute lymphoblastic leukemia. Cancer Cell 30: 849‑862, 2016.

20. Cho J, Min HY, Pei H, Wei X, Sim JY, Park SH, Hwang SJ, Lee HJ, Hong S, Shin YK and Lee HY: The ATF6‑EGF pathway mediates the awakening of slow‑cycling chemoresistant cells and tumor recurrence by stimulating tumor angiogenesis. Cancers (Basal) 12: 1772, 2020.

21. Cho J, Min HY, Lee HJ, Hyun SY, Sim JY, Noh M, Hwang SJ, Park SH, Boo HJ, Lee HJ, et al: RGS2‑mediated translational control mediates cancer cell dormancy and tumor relapse. J Clin Invest 131: e136779, 2021.

22. Oshima N, Yamada Y, Nagayama S, Kawada K, Hasegawa S, Okabe H, Sakai Y and Aoi T: Induction of cancer stem cell properties in colon cancer cells by defined factors. PLoS One 9: e101735, 2014.

23. Nath S and Devi GR: Three‑dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacol Ther 163: 94‑108, 2016.

24. Wahl J, Bogatyreva L, Boukamp P, Rojewski M, van Valen F, Fiedler J, Hipp N, Debatin KM and Beltinger C: Ewing's sarcoma cells with CD57‑associated increase of tumorigenicity and with neural crest‑like differentiation capacity. Int J Cancer 127: 1295‑1307, 2010.

25. Song IS, Jeong YJ, Jeong SH, Kim JE, Han J, Kim TH and Jang SW: Modulation of mitochondrial ERβ expression inhibits triple‑negative breast cancer tumor progression by activating mitochondrial function. Cell Physiol Biochem 52: 468‑485, 2019.

26. Simpson CD, Anyiwe K and Schimmer AD: Anoikis resistance and tumor metastasis. Cancer Lett 272: 177‑185, 2008.

27. Bleau AM, Zandueta C, Redrado M, Martínez‑Canarias S, Larzábal L, Montuenga LM, Calvo A and Lecanda F: Sphere‑derived tumor cells exhibit impaired metastasis by a host‑mediated quiescent phenotype. Oncotarget 6: 27288‑27303, 2015.

28. Carcereri de Prati A, Butturini E, Rigo A, Oppici E, Rossin M, Boriero D and Mariotto S: Metastatic breast cancer cells enter into dormant state and express cancer stem cells phenotype under chronic hypoxia. J Cell Biochem 118: 3237‑3248, 2017.

29. Gao MQ, Choi YP, Kang S, Youn JH and Cho NH: CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene 29: 2672‑2680, 2010.

30. Abass T and Dutta A: p21 in cancer: Intricate networks and multiple activities. Nat Rev Cancer 9: 400‑414, 2009.

31. Karimian A, Ahmadi Y and Yousefi B: Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair (Amst) 42: 63‑71, 2016.

32. Hoang‑Minh LB, Siebzehnrubl FA, Yang C, Suzuki‑Hatano S, Dajac K, Loche T, Andrews N, Schmoll Massari M, Patel J, Amin K, et al: Infiltrative and drug‑resistant slow‑cycling cells support metabolic heterogeneity in glioblastoma. EMBO J 37: e98772, 2018.

33. Van Mater D and Wagner L: Management of recurrent Ewing sarcoma: Challenges and approaches. Onco Targets Ther 12: 2279‑2288, 2019.

34. Rivankar S: An overview of doxorubicin formulations in cancer therapy. J Cancer Res Ther 10: 853‑858, 2014.

35. Martino E, Casamassima G, Castiglione S, Cellupica E, Pantalone S, Papagni F, Rui M, Siciliano AM and Collina S: Vinca alkaloids and analogues as anti‑cancer agents: Looking back, peering ahead. Bioorg Med Chem Lett 28: 2816‑2826, 2018.

36. Liu BQ, Gao YY, Niu XF, Xie JS, Meng X, Guan Y and Wang HQ: Implication of unfolded protein response in resveratrol‑induced inhibition of K562 cell proliferation. Biochem Biophys Res Commun 391: 778‑782, 2010.

37. Ranganathan AC, Zhang L, Adam AP and Aguirre‑Ghiso JA: Functional coupling of p38‑induced up‑regulation of BiP and activation of RNA‑dependent protein kinase‑like endoplasmic reticulum kinase to drug resistance of dormant carcinoma cells. Cancer Res 66: 1702‑1711, 2006.

38. Li X, Zhou X, Li Y, Zu L, Pan H, Liu B, Shen W, Fan Y and Zhou Q: Activating transcription factor 3 promotes malignance of lung cancer cells in vitro. Thorac Cancer 8: 181‑191, 2017.

39. Bandyopadhyay S, Wang Y, Zhan R, Pai SK, Watabe M, Iiizumi M, Furuta E, Mohinta S, Liu W, Hirota S, et al: The tumor metastasis suppressor gene Drg‑1 down‑regulates the expression of activating transcription factor 3 in prostate cancer. Cancer Res 66: 11983‑11990, 2006.

40. Fan F, Jin S, Amundson SA, Tong T, Fan W, Zhao H, Zhu X, Mazzacurati L, Li X, Petrik KL, et al: ATF3 induction following DNA damage is regulated by distinct signaling pathways and over‑expression of ATF3 protein suppresses cells growth. Oncogene 21: 7488‑7496, 2002.

41. Li X, Zang S, Cheng H, Li J and Huang A: Overexpression of activating transcription factor 3 exerts suppressive effects in HepG2 cells. Mol Med Rep 19: 869‑876, 2019.

42. Barone MV, Crozat A, Tabaee A, Philipson L and Ron D: CHOP (GADD153) and its oncogenic variant, TLS‑CHOP, have opposing effects on the induction of G1/S arrest. Genes Dev 8: 453‑464, 1994.

参考文献をもっと見る