リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Circulating microRNA/isomiRs as novel biomarkers of esophageal squamous cell carcinoma」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Circulating microRNA/isomiRs as novel biomarkers of esophageal squamous cell carcinoma

伊富貴 雄太 広島大学

2020.08.27

概要

本研究では、血液中に存在するマイクロRNA(miR)とその類似体であるisomiRが食道扁平上皮癌の新規バイオマーカーとなり得るかを検討した。

マイクロRNAはタンパク質をコードしない、19-25塩基対からなるsmallRNAの一つで、メッセンジャーRNAに作用することで遺伝子発現を制御している。腫瘍細胞由来のmiRは血液中にエクソソームに内包された形で運搬され、腫瘍の進展、転移に有利な状態を作り出すと考えられている。癌患者と健常者ではmiRの発現プロファイルが異なることから診断バイオマーカーとしての有用性が多く報告されている。近年次世代シークエンサー(NGS)研究の発展によりマイクロRNAと近似した塩基配列をもつisomiRの存在が明らかにされた。血液中にも豊富に存在するisomiRは各癌腫の新規バイオマーカーとして注目されているが、実際の報告はまだほとんどない。今回我々はNGS解析により同定された血中miRとisomiRが食道扁平上皮癌(ESCC)の新規バイオマーカーとなり得るかを検討した。

研究の概要としてはESCC患者から採取した血清検体と年齢、性別をマッチさせた健常者(HC)検体からsmallRNAを抽出し、その発現の差異を評価した。異なる集団でバイオマーカーの定義を満たす複数のmiR/isomiRを組み合わせた診断パネルを作成した。

最初の検討ではESCC18例とHC12例を比較した(第1群)。次に異なるESCC30例とHC30例で第1群での候補が再現性をもってバイオマーカーの定義を満たすかを検討した(第2群)。その結果、9つmiRと15つのisomiRで再現性が確認された。多変量解析の結果から24の候補のうちmiR-30a-5p、isomiR-574-3p(3’deletionA)、isomiR-205-5p(3’deletionG)の3つを用いて診断パネルを作成した。診断パネルから計算されるパネルインデックスはESCC群でHC群より有意に高値であった(13.3±8.9vs.3.1±1.3、p<0.001)。 第 1 群、2 群を合わせた集団で ESCC を予測する ROC 曲線の AUC は 0.95 で感度 93.8%、特 異度 81%であった。この診断パネルの有用性を異なる患者群(ESCC18 例、HC18 例;第 3 群)で検証したところ感度 88.9%、特異度 72%であった。

同時期に採取した食道腺癌、食道高度異形成の患者ではパネルインデックスはそれぞれ 6.2±4.5、4.2±1.7 であり ESCC 群より有意に低く、HC 群と有意差を認めなかった。 治療後も血清検体が採取されていた 22例においてパネルインデックスは低下している傾 向を認めた(治療前 11.6±11.5 vs 6.2±5.6、p = 0.03)。

以上の結果から NGS により検出される血中 miRと isomiR を組み合わせることで食道扁 平上皮癌新規バイオマーカーとなる可能性が示唆された。

この論文で使われている画像

参考文献

1. Hesari A, Azizian M, Sheikhi A, Nesaei A, Sanaei S, Mahinparvar N, et al. Chemopreventive and therapeutic potential of curcumin in esophageal cancer: Current and future status. Int J Cancer. 2019; 144:1215–26. https://doi.org/10.1002/ijc.31947 PMID: 30362511

2. Jamali L, Tofigh R, Tutunchi S, Panahi G, Borhani F, Akhavan S, et al. Circulating microRNAs as diagnostic and therapeutic biomarkers in gastric and esophageal cancers. J Cell Physiol. 2018; 233:8538– 50. https://doi.org/10.1002/jcp.26850 PMID: 29923196

3. Njei B, McCarty TR, Birk JW. Trends in Esophageal Cancer Survival in United States Adults from 1973 to 2009: A SEER Database Analysis J Gastroenterol Hepatol. 2016; 31: 1141–6. https://doi.org/10. 1111/jgh.13289 PMID: 26749521

4. Zhang Y. Epidemiology of esophageal cancer. World J Gastroenterol. 2013; 19:5598–606. https://doi. org/10.3748/wjg.v19.i34.5598 PMID: 24039351

5. Yamashina T, Ishihara R, Nagai K, Matsuura N, Matsui F, Ito T, et al. Long-term outcome and metastatic risk after endoscopic resection of superficial esophageal squamous cell carcinoma. Am J Gastroenterol. 2013; 108:544–51. https://doi.org/10.1038/ajg.2013.8 PMID: 23399555

6. Probst A, Aust D, Ma¨rkl B, Anthuber M, Messmann H. Early esophageal cancer in Europe: endoscopic treatment by endoscopic submucosal dissection. Endoscopy. 2015; 47:113–21. https://doi.org/10. 1055/s-0034-1391086 PMID: 25479563

7. Shimada H, Nabeya Y, Okazumi S, Matsubara H, Shiratori T, Gunji Y, et al. Prediction of survival with squamous cell carcinoma antigen in patients with resectable esophageal squamous cell carcinoma. Surgery. 2003; 133: 486–94. https://doi.org/10.1067/msy.2003.139 PMID: 12773976

8. Munck-Wikland E, Kuylenstierna R, Wahren B, Lindholm J, Haglund S. Tumor markers carcinoembryonic antigen, CA 50, and CA 19–9 and squamous cell carcinoma of the esophagus. Pretreatment screening. Cancer. 1988; 62: 2281–6. https://doi.org/10.1002/1097-0142(19881201)62:113.0.co;2-1 PMID: 3179942

9. Brockmann JG, St Nottberg H, Glodny B, Heinecke A, Senninger NJ. CYFRA 21–1 serum analysis in patients with esophageal cancer. Clin Cancer Res. 2010; 6: 4249–52.

10. Keshavarzi M, Sorayayi S, Jafar Rezaei M, Mohammadi M, Ghaderi A, Rostamzadeh A, et al. MicroRNAs-Based Imaging Techniques in Cancer Diagnosis and Therapy. J Cell Biochem. 2017; 118:4121– 8. https://doi.org/10.1002/jcb.26012 PMID: 28370207

11. Mirzaei H, Ferns GA, Avan A, Mobarhan MG.Cytokines and MicroRNA in Coronary Artery Disease. Adv Clin Chem. 2017; 82:47–70. https://doi.org/10.1016/bs.acc.2017.06.004 PMID: 28939213

12. Gholamin S, Mirzaei H, Razavi SM, Hassanian SM, Saadatpour L, Masoudifar A, et al.GD2-targeted immunotherapy and potential value of circulating microRNAs in neuroblastoma. J Cell Physiol. 2018; 233:866–79. https://doi.org/10.1002/jcp.25793 PMID: 28145567

13. Zhang C, Wang C, Chen X, Yang C, Li K, Wang J, et al. Expression profile of microRNAs in serum: a fingerprint for esophageal squamous cell carcinoma. Clin Chem. 2010; 56:1871–9. https://doi.org/10. 1373/clinchem.2010.147553 PMID: 20943850

14. Komatsu S, Ichikawa D, Hirajima S, Kawaguchi T, Miyamae M, Okajima W, et al. Plasma microRNA profiles: identification of miR-25 as a novel diagnostic and monitoring biomarker in oesophageal squamous cell carcinoma.Br J Cancer. 2014; 111:1614–24. https://doi.org/10.1038/bjc.2014.451 PMID: 25117812

15. Wu C, Wang C, Guan X, Liu Y, Li D, Zhou X, et al. Diagnostic and prognostic implications of a serum miRNA panel in oesophageal squamous cell carcinoma. PLoS One. 2014; 9:e92292. https://doi.org/ 10.1371/journal.pone.0092292 PMID: 24651474

16. Zhou X, Wen W, Zhu J, Huang Z, Zhang L, Zhang H, et al. A six-microRNA signature in plasma was identified as a potential biomarker in diagnosis of esophageal squamous cell carcinoma. Oncotarget. 2017; 8:34468–80. https://doi.org/10.18632/oncotarget.16519 PMID: 28380431

17. Huang Z, Zhang L, Zhu D, Shan X, Zhou X, Qi LW, et al. A novel serum microRNA signature to screen esophageal squamous cell carcinoma. Cancer Med. 2017; 6:109–19. https://doi.org/10.1002/cam4. 973 PMID: 28035762

18. Babapoor S, Fleming E, Wu R, Dadras SS. A novel miR-451a isomiR, associated with amelanotypic phenotype, acts as a tumor suppressor in melanoma by retarding cell migration and invasion. PLoS One. 2014; 9:e107502. https://doi.org/10.1371/journal.pone.0107502 PMID: 25237911

19. Nejad C, Pillman KA, Siddle KJ, Pe´pin G, A¨ nko¨ ML, McCoy CE, et al. miR-222 isoforms are differentially regulated by type-I interferon. RNA. 2018; 24:332–41. https://doi.org/10.1261/rna.064550.117 PMID: 29263133

20. Brierley JD, Gospodarowicz MK, Wittekind CH. TNM Classification of Malignant Tumours, Eighth Edition. Wiley-Blackwell, 2017.

21. Ibuki Y, Hamai Y, Hihara J, Emi M, Taomoto J, Furukawa T, et al. Role of Postoperative C-Reactive Protein Levels in Predicting Prognosis After Surgical Treatment of Esophageal Cancer. World J Surg. 2017; 41:1558–65. https://doi.org/10.1007/s00268-017-3900-3 PMID: 28120093

22. Hamai Y, Hihara J, Emi M, Furukawa T, Yamakita I, Kurokawa T, et al. Ability of Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography to Predict Outcomes of Neoadjuvant Chemoradiotherapy Followed by Surgical Treatment for Esophageal Squamous Cell Carcinoma. Ann Thorac Surg. 2016; 102:1132–9. https://doi.org/10.1016/j.athoracsur.2016.04.011 PMID: 27319990

23. Domper Arnal MJ, Ferra´ndez Arenas A´, Lanas Arbeloa A´. Esophageal cancer: Risk factors, screening and endoscopic treatment in Western and Eastern countries. World J Gastroenterol. 2015; 21:7933– 43. https://doi.org/10.3748/wjg.v21.i26.7933 PMID: 26185366

24. Lu YF, Liu ZC, Li ZH, Ma WH, Wang FR, Zhang YB, et al. Esophageal/gastric cancer screening in highrisk populations in Henan Province, China. Asian Pac J Cancer Prev. 2014; 15:1419–22. https://doi.org/ 10.7314/apjcp.2014.15.3.1419 PMID: 24606476

25. Wu CW, Evans JM, Huang S, Mahoney DW, Dukek BA, Taylor WR, et al. A Comprehensive Approach to Sequence-oriented IsomiR annotation (CASMIR): demonstration with IsomiR profiling in colorectal neoplasia. BMC Genomics. 2018; 19:401. https://doi.org/10.1186/s12864-018-4794-7 PMID: 29801434

26. Roberts BS, Hardigan AA, Moore DE, Ramaker RC, Jones AL, Fitz-Gerald MB, et al. Discovery and Validation of Circulating Biomarkers of Colorectal Adenoma by High-Depth Small RNA Sequencing. Clin Cancer Res. 2018; 24:2092–9. https://doi.org/10.1158/1078-0432.CCR-17-1960 PMID: 29490987

27. Mjelle R, Sellæg K, Sætrom P, Thommesen L, Sjursen W, Hofsli E. Identification of metastasis-associated microRNAs in serum from rectal cancer patients. Oncotarget. 2017; 8:90077–89. https://doi.org/ 10.18632/oncotarget.21412 PMID: 29163812

28. Yang X, Chen Y, Chen L. The Versatile Role of microRNA-30a in Human Cancer. Cell Physiol Biochem 2017; 41:1616–32. https://doi.org/10.1159/000471111 PMID: 28359057

29. Wang HY, Li YY, Fu S, Wang XP, Huang MY, Zhang X, et al. MicroRNA-30a promotes invasiveness and metastasis in vitro and in vivo through epithelial-mesenchymal transition and results in poor survival of nasopharyngeal carcinoma patients. Exp Biol Med (Maywood) 2014; 239: 891–8.

30. Wang Y, Qiu C, Lu N, Liu Z, Jin C, Sun C, et al. FOXD1 is targeted by miR-30a-5p and miR-200a-5p and suppresses the proliferation of human ovarian carcinoma cells by promoting p21 expression in a p53-independent manner. Int J Oncol. 2018; 52:2130–42. https://doi.org/10.3892/ijo.2018.4359 PMID: 29620165

31. Jia Z, Wang K, Wang G, Zhang A, Pu P. MiR-30a-5p antisense oligonucleotide suppresses glioma cell growth by targeting SEPT7. PLoS One 2013; 8:e55008. https://doi.org/10.1371/journal.pone.0055008 PMID: 23383034

32. Kimura S, Naganuma S, Susuki D, Hirono Y, Yamaguchi A, Fujieda S, et al. Expression of microRNAs in squamous cell carcinoma of human head and neck and the esophagus: miR-205 and miR-21 are specific markers for HNSCC and ESCC. Oncol Rep. 2010; 23:1625–33. https://doi.org/10.3892/or_ 00000804 PMID: 20428818

33. Chiam K, Wang T, Watson DI, Mayne GC, Irvine TS, Bright T, et al. Circulating Serum Exosomal miRNAs As Potential Biomarkers for Esophageal Adenocarcinoma. J Gastrointest Surg. 2015; 19:1208– 15. https://doi.org/10.1007/s11605-015-2829-9 PMID: 25943911

34. Lebanony D, Benjamin H, Gilad S, Ezagouri M, Dov A, Ashkenazi K, et al. Diagnostic assay based on hsa-miR-205 expression distinguishes squamous from nonsquamous non-small-cell lung carcinoma. J Clin Oncol. 2009; 27:2030–7. https://doi.org/10.1200/JCO.2008.19.4134 PMID: 19273703

35. Bishop JA, Benjamin H, Cholakh H, Chajut A, Clark DP, Westra WH. Accurate classification of nonsmall cell lung carcinoma using a novel microRNA-based approach. Clin Cancer Res. 2010; 16:610–9. https://doi.org/10.1158/1078-0432.CCR-09-2638 PMID: 20068099

36. Jiang M, Zhang P, Hu G, Xiao Z, Xu F, Zhong T, et al. Relative expressions of miR-205-5p, miR-205- 3p, and miR-21 in tissues and serum of non-small cell lung cancer patients. Mol Cell Biochem. 2013; 383:67–75. https://doi.org/10.1007/s11010-013-1755-y PMID: 23881177

37. Ma Q, Wan G, Wang S, Yang W, Zhang J, Yao X. Serum microRNA-205 as a novel biomarker for cervical cancer patients. Cancer Cell Int. 2014; 14:81. https://doi.org/10.1186/s12935-014-0081-0 PMID: 25788864

38. Hezova R, Kovarikova A, Srovnal J, Zemanova M, Harustiak T, Ehrmann J, et al. MiR-205 functions as a tumor suppressor in adenocarcinoma and an oncogene in squamous cell carcinoma of esophagus. Tumour Biol. 2016; 37:8007–18. https://doi.org/10.1007/s13277-015-4656-8 PMID: 26711784

39. Shen X, Xue Y, Cong H, Wang X, Ju S. Dysregulation of serum microRNA-574-3p and its clinical significance in hepatocellular carcinoma. Ann Clin Biochem. 2018; 55:478–84. https://doi.org/10.1177/ 0004563217741908 PMID: 29065698

40. Bryant RJ, Pawlowski T, Catto JW, Marsden G, Vessella RL, Rhees B, et al. Changes in circulating microRNA levels associated with prostate cancer.Br J Cancer. 2012; 106:768–74. https://doi.org/10. 1038/bjc.2011.595 PMID: 22240788

41. Xu H, Liu X, Zhou J, Chen X, Zhao J. miR-574-3p acts as a tumor promoter in osteosarcoma by targeting SMAD4 signaling pathway. Oncol Lett. 2016; 12:5247–53. https://doi.org/10.3892/ol.2016.5355 PMID: 28105233

42. Krishnan P, Ghosh S, Wang B, Li D, Narasimhan A, Berendt R, et al. Next generation sequencing profiling identifies miR-574-3p and miR-660-5p as potential novel prognostic markers for breast cancer. BMC Genomics. 2015; 16:735. https://doi.org/10.1186/s12864-015-1899-0 PMID: 26416693

43. Yu F, Pillman KA, Neilsen CT, Toubia J, Lawrence DM, Tsykin A, et al. Naturally existing isoforms of miR-222 have distinct functions. Nucleic Acids Res. 2017; 45:11371–85. https://doi.org/10.1093/nar/ gkx788 PMID: 28981911

44. Ma M, Yin Z, Zhong H, Liang T, Guo L. Analysis of the expression, function, and evolution of miR-27 isoforms and their responses in metabolic processes. Genomics. 2018 Aug 23. pii: S0888-7543(18)30297- 0. doi: 10.1016.

45. Chan YT, Lin YC, Lin RJ, Kuo HH, Thang WC, Chiu KP, et al. Concordant and discordant regulation of target genes by miR-31 and its isoforms. PLoS One. 2013; 8(3):e58169. https://doi.org/10.1371/journal. pone.0058169 PMID: 23472152

参考文献をもっと見る