リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Review of the Mechanical Properties of High-Strength Alloys at Cryogenic Temperatures」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Review of the Mechanical Properties of High-Strength Alloys at Cryogenic Temperatures

Osamu Umezawa 20343171 横浜国立大学

2021.06.24

概要

To advance the understanding of metallic materials for structural components at cryogenic temperatures, a review of previous studies on the mechanical properties of austenitic stainless steels, titanium alloys, aluminum alloys, and copper alloys is presented herein. In particular,the evaluation of strength and toughness balance intends to clarify key differences between these alloys to facilitate better alloy design and potentially bolster further alloy development.

Several key points on cryogenic mechanical tests are also introduced. Temperature control,testing tools, and test conditions should be properly calibrated to avoid experimental errors.

Furthermore, substantial progress for subsurface crack initiation in high-cycle fatigue at cryogenic temperatures is presented, in which the mechanism of subsurface crack generation is highlighted as a key design consideration in microstructure of high-strength alloys.

この論文で使われている画像

参考文献

1. T. Ogata, “Structural Alloys for Cryogenic Applications” (in Japanese), Teion Kogaku 26, no. 1 (January 1991): 18–29,https://doi.org/10.2221/jcsj.26.18

2. O. Umezawa and K. Ishikawa, “Electrical and Thermal Conductivities and Magnetization of Some Austenitic Steels, Titanium and Titanium Alloys at Cryogenic Temperatures,” Cryogenics 32, no. 10 (1992): 873–880, https://doi.org/ 10.1016/0011-2275(92)90353-C

3. T. Ogata, “Load-Displacement Curves, Specimen Heating, and Strain-Induced Martensitic Transformation of Austenitic Stainless Steels at Cryogenic Temperatures” (in Japanese), Teion Kogaku 42, no. 1 (February 2007): 10–17, https://doi.org/ 10.2221/jcsj.42.10

4. T. Ogata, K. Hiraga, H. Nagai, and K. Ishikawa, “A Simple Method for Charpy Impact Test at Liquid Helium Temperature” (in Japanese), Tetsu-to-Hagane 69, no. 6 (June 1983): 641–646, https://doi.org/10.2355/tetsutohagane1955.69.6_641

5. T. Ogata and T. Yuri, “Fatigue Testing of Structural Alloys Using a Refrigerator” (in Japanese), Teion Kogaku 35, no. 12 (December 2000): 562–567, https://doi.org/10.2221/jcsj.35.562

6. Y. Yamaura, “Measurement of Strain and Displacement in Cryogenic Environment with Strain Gauges” (in Japanese), Teion Kogaku 26, no. 6 (June 1991): 448–455, https://doi.org/10.2221/jcsj.26.448

7. R. Tobler and J. Shepic, “Design and Performance of a Ring-Shaped Clip Gage for Fracture Mechanics Testing,” Journal of Testing and Evaluation 13, no. 4 (July 1985): 299–302, https://doi.org/10.1520/JTE11250J

8. H. Moriya, K. Nagai, Y. Kawabe, and A. Okada, “Strain Rate Sensitivity of Stress-Strain Curves in a Ti-Fe-O Alloy” (in Japanese), Tetsu-to-Hagane 82, no. 10 (October 1996): 876–880, https://doi.org/10.2355/tetsutohagane1955.82. 10_876

9. N. Tsuchida, H. Moriya, Y. Tomota, O. Umezawa, and K. Nagai, “Description of Stress-Strain Curves Based on Thermal Activation Models for a Ti–Fe–O Alloy at 77 to 296 K with Strain Rates from 10−9 to 10−2 Sec−1 ,” ISIJ International 40, no. 1 (January 2000): 84–90, https://doi.org/10.2355/isijinternational.40.84

10. K. Shibata, T. Ogata, A. Nyilas, T. Yuri, H. Fujii, S. Ohmiya, T. Onishi, and K.P. Weiss, “Comparison of Strength and Serration at Cryogenic Temperatures among 304L, 316L and 310S Steels,” AIP Conference Proceedings 986, no. 1 (March 2008): 108–115, https://doi.org/10.1063/1.2900332

11. K. Shibata, H. Sakamoto, K. Fujita, and T. Fujita, “Effect of Testing Conditions on Serration of Austenitic Steels in Liquid Helium,” Transactions of the Iron and Steel Institute of Japan 28, no. 2 (1988): 136–142, https://doi.org/10.2355/ isijinternational1966.28.136

12. S. Saji and S. Hori, “Mechanical Properties of Aluminum Alloys at Very Low Temperature” (in Japanese), Journal of Japan Institute of Light Metals 39, no. 8 (August 1989): 574–583, https://doi.org/10.2464/jilm.39.574

13. F. R. Fickett and R. P. Reed, Materials Studies for Magnetic Fusion Energy Applications at Low Temperatures-I, NBSIR 78- 884 (Gaithersburg, MD: National Bureau of Standards, 1978).

14. T. Ogata, K. Ishikawa, K. Nagai, T. Yuri, and O. Umezawa, “Specimen Temperature Rise and Testing Conditions during Fatigue Tests at Cryogenic Temperatures” (in Japanese), Teion Kogaku 26, no. 3 (June 1991): 190–196, https://doi.org/10. 2221/jcsj.26.190

15. T. Ogata, “Simple Mechanical Testing Method to Evaluate Influence of High Pressure Hydrogen Gas,” in ASME 2018 Pressure Vessels and Piping Conference (New York: American Society of Mechanical Engineers, 2018), https://doi.org/10. 1115/PVP2018-84187

16. T. Ogata, “Influence of 70 MPa Hydrogen Gas on SUS 630 from 77 K to 373 K by Simple Testing Method,” in ASME 2018 Pressure Vessels and Piping Conference (New York: American Society of Mechanical Engineers, 2018), https://doi.org/10. 1115/PVP2018-84462

17. J. G. Weisend II, V. Flynn, E. Thompson, and R. P. Reed, A Reference Guide for Cryogenic Properties of Materials, SLAC-TN-03-023 (Washington, DC: U.S. Department of Energy, 2003), https://perma.cc/7WEN-FB3G

18. U.S. Department of Energy, “U.S. Department of Energy: Office of Scientific and Technical Information,” 2021, http:// web.archive.org/web/20210114115449/https://www.osti.gov/

19. National Institute of Standards and Technology, “NIST Data Gateway,” 2021, http://web.archive.org/web/ 20210112232429/https://www.nist.gov/srd

20. H. J. Hucek, K. E. Wilkes, K. R. Hanby, and J. K. Thompson, Handbook on Materials for Superconducting Machinery (Columbus, OH: Metals and Ceramics Information Center, 1977).

21. R. P. Reed and A. F. Clark, Materials at Low Temperatures (Geauga County, OH: ASM International, 1983). Materials Performance and Characterization UMEZAWA ON CRYOGENIC MECHANICAL PROPERTIES 13

22. Cryogenic and Superconductivity Society of Japan, Handbook of Superconductivity and Cryogenic Engineering 300 (in Japanese) (Tokyo: Ohmsha Ltd., 1993).

23. National Institute for Materials Science, “Space Use Materials Strength Datasheet,” http://web.archive.org/web/ 20210114121819/https://smds.nims.go.jp/space/en/

24. National Institute for Materials Science, Space Use Materials Strength Datasheet: Fractographic Atlas of Space Use Materials, No. F-1/F-2 (in Japanese) (Tsukuba: NIMS, 2007).

25. H. Nakajima, K. Yoshida, and S. Shimamoto, “Development of New Cryogenic Steels for the Superconducting Magnets of the Fusion Experimental Reactor,” ISIJ International 30, no. 8 (August 1990): 567–578, https://doi.org/10.2355/ isijinternational.30.567

26. M. Iguchi, T. Sakurai, M. Nakahira, N. Koizumi, and H. Nakajima, “Cryogenic Structural Materials of the ITER Toroidal Field Coil Structure,” in Fourth International Workshop on Structural Materials for Innovative Nuclear Systems (SMINS-4) (Paris, France: The Nuclear Energy Agency, 2016).

27. K. Tobita, N. Asakura, R. Hiwatari, Y. Someya, H. Utoh, K. Katayama, A. Nishimura, et al., “Design Strategy and Recent Design Activity on Japan’s DEMO,” Fusion Science and Technology 72, no. 4 (2017): 537–545, https://doi.org/10.1080/ 15361055.2017.1364112

28. R. P. Reed and T. Horiuchi, Austenitic Steels at Low Temperatures (Boston, MA: Springer-Verlag, 1983), https://doi.org/ 10.1007/978-1-4613-3730-0

29. R. P. Reed, “Trends and Advances in Cryogenic Materials,” in Cryogenic Engineering, eds. K. D. Timmerhaus and R. P. Reed (New York: Springer, 2007), 52–83.

30. T. Saito, K. Kawano, T. Yamazaki, H. Ozeki, T. Isono, K. Hamada, A. Devred, and A. Vostner, “Mechanical Properties of High Manganese Austenitic Stainless Steel JK2LB for ITER Central Solenoid Jacket Material,” Physics Procedia 67 (2015): 1016–1021, https://doi.org/10.1016/j.phpro.2015.06.193

31. D. M. McRae, S. Balachandran, and R. P. Walsh, “Fatigue and Fracture of Three Austenitic Stainless Steels at Cryogenic Temperatures,” IOP Conference Series: Materials Science and Engineering 279 (2017): 012001, https://doi.org/10.1088/ 1757-899X/279/1/012001

32. K. Suemune, K. Sugino, H. Masumoto, H. Nakajima, and S. Shimamoto, “Improvement of Toughness of a High-Strength, High-Manganese Stainless Steel for Cryogenic Use,” in Advances in Cryogenic Engineering Materials, vol. 32 (New York: Springer, 1986), 51–56.

33. K. Suemune, T. Sakamoto, T. Ogawa, T. Okazaki, S. Maehara, H. Nakajima, and S. Shimamoto, “Manufacturing and Properties of a Nitrogen-Containing Cr-Mn and Cr-Ni Austenitic Stainless Steels for Cryogenic Use,” Advances in Cryogenic Engineering Materials 34 (January 1988): 123–129.

34. J. Ishizaka, R. Miura, S. Shimamoto, and H. Nakajima, “Strength and Toughness of 12Cr-12Ni-10Mn05Mo Steel for Cryogenic Structural Application” (in Japanese), Tetsu-to-Hagane 76, no. 5 (May 1990): 791–798, https://doi.org/10. 2355/tetsutohagane1955.76.5_791

35. H. Nagai, T. Yuri, K. Ishikawa, and O. Umezawa, “Titanium and Its Alloys for Cryogenic Structural Materials” (in Japanese), Teion Kogaku 22, no. 6 (1987): 347–353, https://doi.org/10.2221/jcsj.22.347

36. K. Nagai, T. Yuri, T. Ogata, O. Umezawa, K. Ishikawa, T. Nishimura, T. Mizoguchi, and Y. Ito, “Cryogenic Mechanical Properties of Ti-6Al-4V Alloys with Three Levels of Oxygen Content,” ISIJ International 31, no. 8 (1991): 882–889, https://doi.org/10.2355/isijinternational.31.882

37. R. P. Reed, P. T. Purtscher, N. J. Simon, J. D. McColskey, R. P. Walsh, J. R. Berger, E. S. Drexler, and R. L. Santoyo, Aluminum Alloys for ALS Cryogenic Tanks: Comparative Measurements of Cryogenic Mechanical Properties of Al-Li Alloys and Alloy 2219, NISTIR 3979 (Gaithersburg, MD: National Institute of Standards and Technology, 1993), https://perma. cc/226X-7Z8X

38. J. G. Kaufman and E. T. Wanderer, “Tensile Properties and Notch Toughness of Some 7XXX Alloys at —452°F,” in Advances in Cryogenic Engineering, vol. 16 (New York: Springer, 1970), 27–36.

39. N. J. Simon, E. S. Drexler, and R. P. Reed, Properties of Copper and Copper Alloys at Cryogenic Temperatures, NIST Monograph 177 (Gaithersburg, MD: National Institute of Standards and Technology, 1992), https://perma.cc/UZ2XSG2A

40. R. P. Reed and R. P. Mikesell, Low Temperature Mechanical Properties of Copper and Selected Copper Alloys, NBS Monograph 101 (Gaithersburg, MD: National Bureau of Standards, 1967), https://perma.cc/W8H8-3AUC

41. O. Umezawa, “Tensile Properties and Conductivities of a Precipitation Hardened and Cold-Rolled Cu-0.3Cr-0.1Zr Alloy at Cryogenic Temperature,” IOP Conference Series: Materials Science and Engineering 102 (2015): 012006,

42. Y. Sakai, K. Inoue, and H. Maeda, “New High-Strength, High-Conductivity Cu-Ag Alloy Sheets,” Acta Metallurgica et Materialia 43, no. 4 (April 1995): 1517–1522, https://doi.org/10.1016/0956-7151(94)00376-S

43. Y. Sakai and H. -J. Schneider-Muntau, “Ultra-High Strength, High Conductivity Cu-Ag Alloy Wires,” Acta Materialia 45, no. 3 (March 1997): 1017–1023, https://doi.org/10.1016/S1359-6454(96)00248-0

44. N. Koga, W. Zhang, O. Umezawa, V. Tschan, J. Sas, and K. P. Weiss, “Temperature Dependence on Tensile Properties of Cu-40mass%Fe Dual Phase Alloy,” IOP Conference Series: Materials Science and Engineering 279 (2017): 012004, https:// doi.org/10.1088/1757-899X/279/1/012004

45. O. Umezawa and K. Nagai, “Subsurface Crack Generation in High-Cycle Fatigue for High Strength Alloys,” ISIJ International 37, no. 12 (1997): 1170–1179, https://doi.org/10.2355/isijinternational.37.1170 Materials Performance and Characterization 14 UMEZAWA ON CRYOGENIC MECHANICAL PROPERTIES

46. H. Yokoyama, O. Umezawa, K. Nagai, T. Suzuki, and K. Kokubo, “Cyclic Deformation, Dislocation Structure, and Internal Fatigue Crack Generation in a Ti-Fe-O Alloy at Liquid Nitrogen Temperature,” Metallurgical and Materials Transactions A 31 (November 2000): 2793–2805, https://doi.org/10.1007/BF02830339

47. W. Li, O. Umezawa, and N. Koga, “Analysis of Subsurface Fatigue Crack Generation in Ti–Fe–O Alloy at Low Temperature,” ISIJ International 58, no. 2 (2018): 359–363, https://doi.org/10.2355/isijinternational.ISIJINT2017-514

48. O. Umezawa, T. Yuasa, and W. Li, “Fractographical Analyses of Crack Initiation Site in High-Cycle Fatigue for Ti–Fe–O Alloy at Low Temperature,” ISIJ International 58, no. 7 (2018): 1332–1340, https://doi.org/10.2355/isijinternational. ISIJINT-2017-673

49. K. Nagai, T. Ogata, T. Yuri, K. Ishikawa, T. Nishimura, T. Mizoguchi, and Y. Ito, “Fatigue Fracture of Ti-5Al-2.5Sn ELI Alloy at Liquid Helium Temperature,” Transactions of the Iron and Steel Institute of Japan 27, no. 5 (1987): 376–382, https://doi.org/10.2355/isijinternational1966.27.376

50. O. Umezawa, K. Nagai, and K. Ishikawa, “Subsurface Crack Initiation in High Cycle Fatigue of Ti-5Al-2.5Sn Extra-Low Interstitial Alloy at Liquid Helium Temperature,” Materials Science and Engineering: A 129, no. 2 (November 1990): 217–221, https://doi.org/10.1016/0921-5093(90)90268-8

51. Y. Ono, T. Yuri, H. Sumiyoshi, S. Matsuok, and T. Ogata, “High-Cycle Fatigue Properties at Cryogenic Temperatures in Forged- and Rolled-Ti–5% Al–2.5% Sn ELI Alloys,” Science and Technology of Advanced Materials 4, no. 4 (January 2003): 301–307, https://doi.org/10.1016/S1468-6996(03)00062-7

52. Y. Ono, T. Yuri, T. Ogata, M. Demura, S. Matsuoka, and H. Sunakawa, “High-Cycle Fatigue Behavior of Ti-5Al-2.5Sn ELI Alloy Forging at Low Temperatures,” AIP Conference Proceedings 1574, no. 1 (January 2014): 340–345, https://doi.org/10. 1063/1.4860646

53. O. Umezawa, K. Nagai, and K. Ishikawa, “Subsurface Crack Initiation in High Cycle Fatigue of Ti-6Al-4V Alloys at Cryogenic Temperatures” (in Japanese), Tetsu-to-Hagane 76, no. 6 (June 1990): 924–931, https://doi.org/10.2355/ tetsutohagane1955.76.6_924

54. O. Umezawa, K. Nagai, H. Yokoyama, and T. Suzuki, “Effects of Microstructure on the Subsurface Crack Initiation of Ti-6Al-4V Alloys,” in High Cycle Fatigue of Structural Materials, eds. W. O. Soboyejo and T. S. Srivatsan (TMS, 1997), 287–298.

55. O. Umezawa and K. Nagai, “Deformation Structure and Subsurface Fatigue Crack Generation in Austenitic Steels at Low Temperature,” Metallurgical and Materials Transactions A 29 (March 1998): 809–822, https://doi.org/10.1007/ s11661-998-0272-1

56. O. Umezawa and K. Nagai, “Effects of Test Temperature on Internal Fatigue Crack Generation Associated with Nonmetallic Particles in Austenitic Steels,” Metallurgical and Materials Transactions A 29 (December 1998): 3017– 3028, https://doi.org/10.1007/s11661-998-0209-8

57. Y. Ono, T. Yuri, H. Sumiyoshi, E. Takeuchi, S. Matsuoka, and T. Ogata, “High-Cycle Fatigue Properties at Cryogenic Temperatures in INCONEL 718 Nickel-Based Superalloy,” Materials Transactions 45, no. 2 (2004): 342–345, https://doi. org/10.2320/matertrans.45.342

58. W. B. Li and O. Umezawa, “A Review of Subsurface Crack Initiation Models in High-Cycle Fatigue for Titanium Alloys,” Key Engineering Materials 741 (June 2017): 76–81, https://doi.org/10.4028/www.scientific.net/KEM.741.76

59. O. Umezawa and K. Ishikawa, “Phenomenological Aspects of Fatigue Life and Fatigue Crack Initiation in High Strength Alloys at Cryogenic Temperature,” Materials Science and Engineering A 176, nos. 1–2 (March 1994): 397–403, https://doi. org/10.1016/0921-5093(94)91005-7

60. O. Umezawa, “Subsurface Fatigue Crack Generation and Strain Incompatibility Near Grain Boundaries for a NitrogenStrengthened Austenitic Steel at Cryogenic Temperature,” ISIJ International 49, no. 10 (2009): 1624–1629, https://doi.org/ 10.2355/isijinternational.49.1624

61. O. Umezawa, “Effects of Partial Recrystallization on High-Cycle Fatigue Deformation and Crack Generation of a Nitrogen-Strengthened 32Mn-7Cr Austenitic Steel at Liquid-Nitrogen Temperature,” Metallurgical and Materials Transactions A 35 (February 2004): 543–553, https://doi.org/10.1007/s11661-004-0365-4

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る