リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Study on Behavioral Decision Making by Power Generation Companies Regarding Energy Transitions under Uncertainty」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Study on Behavioral Decision Making by Power Generation Companies Regarding Energy Transitions under Uncertainty

Gotoh, Ryosuke Tezuka, Tetsuo McLellan, Benjamin C. 京都大学 DOI:10.3390/en15020654

2022.01

概要

With respect to decision making by companies, normative approaches such as the net present value (NPV) method are widely applied, even though it is known that investors may make non-normative decisions. This study aimed to obtain new information on the decision-making behavior of renewable energy (RE) companies under uncertainty in the energy market, which is not provided by the conventional normative approach. In this study, we designed a novel framework that expressed both normative and non-normative perspectives of decision making, and developed a behavioral decision-making model of a power generation company investing in large-scale RE (RE company). We also examined the decisions of the RE company under uncertainty in the energy market using the developed model, considering the Kansai region in Japan as an example study area. As a result, compared to the conventional NPV method, we obtained the following information: (i) heavy investments in either photovoltaics (PV) or wind resulted in decreased variable renewable energy (VRE) capacity, even though financial support was sufficient; (ii) balanced investments in both PV and wind yielded a larger VRE capacity in cases where financial support was sufficient; and (iii) co-worker’s suggestions that lowered the decision-makers’ reference point (RFP) encouraged VRE investments despite insufficient financial support.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

Raiffa, H.; Tversky, A. Decision Making: Descriptive, Normative, and Prescriptive Interactions; Cambridge University Press: Cambridge,

UK, 1988.

Lepenioti, K.; Bousdekis, A.; Apostolou, D.; Mentzas, G. Prescriptive analytics: Literature review and research challenges. Int. J.

Inf. Manag. 2020, 50, 57–70. [CrossRef]

Block, S. Are real options actually used in the real world? Eng. Econ. 2007, 52, 255–267. [CrossRef]

Baker, H.K.; Dutta, S.; Saadi, S. Management Views on Real Options in Capital Budgeting. J. Appl. Financ. 2011, 21, 18–29.

[CrossRef]

Luenberger, D. Investment Science; Oxford University Press: Oxford, UK, 1998.

Summers, L.H. Investment Incentives and The Discounting Of Depreciation Allowances. In The Effects of Taxation on Capital

Accumulation; Martin, F., Ed.; University of Chicago Press: Chicago, IL, USA, 1987.

McDonald, R.; Siegel, D. The Value of Waiting to Invest. Q. J. Econ. 1986, 101, 707–728. [CrossRef]

Fernandes, B.; Cunha, J.; Ferreira, P. The use of real options approach in energy sector investments. Renew. Sustain. Energy Rev.

2011, 15, 4491–4497. [CrossRef]

McDonald, R.; Siegel, D. Investment and the Valuation of Firms When There is an Option to Shut Down. Int. Econ. Rev. 1985,

26, 331–349. [CrossRef]

Kaslow, T.; Pindyck, R. Valuing Flexibility in Utility Planning. Electr. J. 1994, 7, 60–65. [CrossRef]

Hörnlein, L. The value of gas-fired power plants in markets with high shares of renewable energy: A real options application.

Energy Econ. 2019, 81, 1078–1098. [CrossRef]

Santos, L.; Soares, I.; Mendes, C.; Ferreira, P. Real Options versus Traditional Methods to assess Renewable Energy Projects.

Renew. Energy 2014, 68, 588–594. [CrossRef]

Zhang, M.M.; Wang, Q.; Zhou, D.; Ding, H. Evaluating uncertain investment decisions in low-carbon transition toward renewable

energy. Appl. Energy 2019, 240, 1049–1060. [CrossRef]

Li, Y.; Wu, M.; Li, Z. A real options analysis for renewable energy investment decisions under China carbon trading market.

Energies 2018, 11, 1817. [CrossRef]

Bigerna, S.; Wen, X.; Hagspiel, V.; Kort, P.M. Green electricity investments: Environmental target and the optimal subsidy. Eur. J.

Oper. Res. 2019, 279, 635–644. [CrossRef]

Naito, Y.; Takashima, R.; Kimura, H.; Madarame, H. Evaluating replacement project of nuclear power plants under uncertainty.

Energy Policy 2010, 38, 1321–1329. [CrossRef]

Glensk, B.; Madlener, R. The value of enhanced flexibility of gas-fired power plants: A real options analysis. Appl. Energy 2019,

251, 113125. [CrossRef]

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Energies 2022, 15, 654

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

28 of 29

Ahmad, S.; Tahar, R.M. Selection of renewable energy sources for sustainable development of electricity generation system using

analytic hierarchy process: A case of Malaysia. Renew. Energy 2014, 63, 458–466. [CrossRef]

Amer, M.; Daim, T.U. Selection of renewable energy technologies for a developing county: A case of Pakistan. Energy Sustain.

Dev. 2011, 15, 420–435. [CrossRef]

Karger, C.R.; Hennings, W. Sustainability evaluation of decentralized electricity generation. Renew. Sustain. Energy Rev. 2009,

13, 583–593. [CrossRef]

Theodorou, S.; Florides, G.; Tassou, S. The use of multiple criteria decision making methodologies for the promotion of RES

through funding schemes in Cyprus, A review. Energy Policy 2010, 38, 7783–7792. [CrossRef]

Saaty, T.L. Relative measurement and its generalization in decision making why pairwise comparisons are central in mathematics

for the measurement of intangible factors the analytic hierarchy/network process. Rev. R. Spanish Acad. Sci. 2008, 102, 251–318.

[CrossRef]

Hahn, W.J. Making decisions with multiple criteria: A case in energy sustainability planning. EURO J. Decis. Process. 2015,

3, 161–185. [CrossRef]

Hodgkingson, G.; Bown, N.; Manule, J.; Glaister, K.; Pearman, A. Research notes and communications breaking the frame: An

analysis of strategic cognition and decision making under uncertainty. Strateg. Manag. J. 1999, 985, 977–985. [CrossRef]

Masini, A.; Menichetti, E. The impact of behavioural factors in the renewable energy investment decision making process:

Conceptual framework and empirical findings. Energy Policy 2012, 40, 28–38. [CrossRef]

Masini, A.; Menichetti, E. Investment decisions in the renewable energy sector: An analysis of non-financial drivers. Technol.

Forecast. Soc. Chan. 2013, 80, 510–524. [CrossRef]

Salm, S.; Hille, S.L.; Wüstenhagen, R. What are retail investors ’ risk-return preferences towards renewable energy projects ? A

choice experiment in Germany. Energy Policy 2016, 97, 310–320. [CrossRef]

West, J.; Bailey, I.; Winter, M. Renewable energy policy and public perceptions of renewable energy: A cultural theory approach.

Energy Policy 2010, 38, 5739–5748. [CrossRef]

Kahneman, D.; Tversky, A. Prospect theory: An analysis of decision under risk. Econometlica 1979, 47, 263–291. [CrossRef]

Tversky, A.; Kahneman, D. Advances in Prospect Theory: Cumulative Representation of Uncertainty. J. Risk Uncertain. 1992,

5, 297–323. [CrossRef]

Klein, M.; Deissenroth, M. When do households invest in solar photovoltaics? An application of prospect theory. Energy Policy

2017, 109, 270–278. [CrossRef]

Heutel, G. Prospect theory and energy efficiency. J. Environ. Econ. Manag. 2019, 96, 236–254. [CrossRef]

KEPCO Zero Carbon Vision 2050. Available online: https://www.kepco.co.jp/corporate/pr/2021/pdf/0226_3j_01.pdf (accessed

on 15 July 2021).

Ansoff, H.I. Corporate Strategy; McGraw-Hill: New York, NY, USA, 1965.

Janczak, S. The strategic decision-making process in organizations. Probl. Perspect. Manag. 2005, 3, 58–70.

Ochi, W. Theory Z: How American Business Can Meet the Japanese Challenge; Avon Books: New York, NY, USA, 1981.

Nonaka, I. Toward Middle-Up-Down Management: Accelerating Information Creation. Sloan Manage. Rev. 1988, 29, 9–18.

Mom, T.J.M.; Van Den Bosch, F.A.J.; Volberda, H.W. Investigating managers’ exploration and exploitation activities: The influence

of top-down, bottom-up, and horizontal knowledge inflows. J. Manag. Stud. 2007, 44, 910–931. [CrossRef]

Loock, M. Going beyond best technology and lowest price: On renewable energy investors’ preference for service-driven business

models. Energy Policy 2012, 40, 21–27. [CrossRef]

Li, P.; Sekar, S.; Zhang, B. A capacity-price game for uncertain renewables resources. In Proceedings of the e-Energy ’18:

Proceedings of the Ninth International Conference on Future Energy Systems, Karlsruhe, Germany, 12–15 June 2018; pp. 119–133.

[CrossRef]

Zhao, D.; Wang, H.; Huang, J.; Lin, X. Storage or no storage: Duopoly competition between renewable energy suppliers in a local

energy market. IEEE J. Sel. AREAS Commun. 2019, 38, 31–47. [CrossRef]

Joskow, P.L. Capacity payments in imperfect electricity markets: Need and design. Util. Policy 2008, 16, 159–170. [CrossRef]

The Federation of Electric Power Companies of Japan Electricity Review Japan. Available online: https://www.fepc.or.jp/

english/library/electricity_eview_japan/__icsFiles/afieldfile/2020/03/11/2019ERJ_full.pdf (accessed on 10 May 2020).

Kansai Electric Power Company Connected Capacity of Renewable Energy in Kansai Region. Available online: https://www.

kansai-td.co.jp/denkiyoho/area-performance.html (accessed on 4 March 2020).

Kansai Electric Power Company Renewable Energy of the Kansai Region. Available online: https://www.kepco.co.jp/energy_

supply/energy/newenergy/index.html (accessed on 28 August 2021).

Kansai Electric Power Company Electricity Supply and Demand Records in Kansai Region. Available online: https://www.

kansai-td.co.jp/english/home/denkiyoho/area-performance.html (accessed on 4 March 2020).

International Energy Agency. World Energy Outlook 2019; International Energy Agency: Paris, France, 2019.

Kansai Electric Power Company Thermal Power Plants of KEPCO. Available online: https://www.kepco.co.jp/energy_supply/

energy/thermal_power/plant/index.html (accessed on 4 March 2020).

Kansai Electric Power Company Update of Nuclear Power Plants of KEPCO:2018. Available online: https://www.kepco.co.jp/

ir/brief/earnings/2019/pdf/pdf2019_1029_02.pdf (accessed on 4 March 2020).

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Energies 2022, 15, 654

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

29 of 29

Gotoh, R.; Tezuka, T. Study on power supply system for large scale renewable energy introduction under different strategies of

existing power plant replacement. Jap. Soc. Energy Resour. 2020, 41, 38–50. [CrossRef]

Schmidt, J.; Cancella, R.; Pereira, A.O. The role of wind power and solar PV in reducing risks in the Brazilian hydro-thermal

power system. Energy 2016, 115, 1748–1757. [CrossRef]

Becker, S.; Frew, B.A.; Andresen, G.B.; Jacobson, M.Z.; Schramm, S.; Greiner, M. Renewable build-up pathways for the US:

Generation costs are not system costs. Energy 2015, 81, 437–445. [CrossRef]

deLlano-Paz, F.; Calvo-Silvosa, A.; Antelo, S.I.; Soares, I. Energy planning and modern portfolio theory: A review. Renew. Sustain.

Energy Rev. 2017, 77, 636–651. [CrossRef]

Prelec, D. The Probability Weighting Function. Econometrica 1998, 66, 497. [CrossRef]

Gonzalez, R.; Wu, G. On the Shape of the Probability Weighting Function. Cogn. Psychol. 1999, 166, 129–166. [CrossRef] [PubMed]

Rieger, M.O.; Wang, M. Cumulative prospect theory and the St. Petersburg paradox. Econ. Theory 2006, 28, 665–679. [CrossRef]

Agency for Natural Resources and Energy; Organization for Cross-regional Coordination of Transmission Operators Setting of

Demand Curves. Available online: https://www.occto.or.jp/iinkai/youryou/kentoukai/2018/files/youryou_kentoukai_16_04.

pdf (accessed on 4 March 2020).

Ministry of Economy Trade and Industry. Properties of Power Plants; Ministry of Economy Trade and Industry: Tokyo, Japan, 2015.

Ministry of Environment of Japan List of Calculation Methods and Emission Factors. Available online: https://ghg-santeikohyo.

env.go.jp/files/calc/itiran2019.pdf (accessed on 22 February 2020).

...

参考文献をもっと見る