リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Framework and Evaluation of the Conditions for Companies to Engage in Renewable Energy Transitions under Constraints of Existing Infrastructure」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Framework and Evaluation of the Conditions for Companies to Engage in Renewable Energy Transitions under Constraints of Existing Infrastructure

Gotoh, Ryosuke 京都大学 DOI:10.14989/doctor.k23534

2021.09.24

概要

2050 年のカーボンニュートラル達成に向けて、今後日本企業がどのように意思決定していくかが大変重要になってきている。本論文では、企業がエネルギー移行を進めるにあたり、(1)必要なインフラ投資、(2)再生可能エネルギー(RE)への投資意思決定、(3)エネルギー移行に関する経営戦略、という様々な角度から分析・評価を行った。

第 1 章では、エネルギー移行・RE 投資に関する意思決定・環境経営について文献調査を行い、本研究の背景と目的を述べるとともに位置づけを明らかにした。

第 2 章は、エネルギー移行における必要なインフラ投資という視点において、再エネ大量導入時における、時系列的な既設発電設備の更新・廃棄計画が及ぼす電源構成への影響を明らかにすることを目的とした。本章では、詳細な電源構成データに基づいた諸元において、定量的システムモデリングの手法を適用し、老朽化火力を時系列的に更新しながら再生可能エネルギーの導入を進めることによって、RE の出力抑制量を抑えられることを示すとともに、積算総費用を低減できることを明らかにした。また RE が大量導入される遷移期において、天然ガスコンバインドサイクル発電(GTCC)による電力調整能力が大きい地域では太陽光発電(PV)の導入が多くなり、電力調整能力が小さい地域では風力発電の導入が多くなるという地域性があることを示した。更に、老朽化火力発電設備を更新するシナリオでは、RE 導入量の多い地域の余剰電力で水素を製造し、水素焚き GTCC 容量の多い他の地域に水素を輸送することで、総コストを削減し、出力抑制量を抑制しながら、RE 導入の促進が可能であることがわかった。

第 3 章では、企業の RE への投資意思決定について、電力市場における不確実性の下での企業の RE 投資意思決定行動に関する新しい知見を得ることを目的とし、規範的・非規範的な両面を表す RE 投資企業の意思決定プロセスに関する新しいフレームワークを設計した。このフレームワークは、Top Management (投資意思決定者)と Middle Management (投資戦略の分析・提案者)の 2 階層からなり、Middle Management の分析結果と提案を基に、Top Management が規範的・非規範的な両面から投資行動するという意思決定プロセスを表現した。このフレームワークを用いて、不確実性下の電力市場における RE 投資企業の行動意思決定モデルを開発した。開発したモデルにおいて、Top Management の規範的側面には従来の正味現在価値(NPV)法を、非規範的な側面には行動経済学の手法を適用した。開発したモデルを用いたシミュレーションの結果、従来の規範的な NPV 手法と比較して、RE 投資会社の行動的意思決定について次の知見を得た。(a) RE への補助が高い場合、PVまたは風力発電のどちらかに偏った投資は、RE 投資を妨げる可能性がある。(b) REへの補助が高い場合、PV と風力の両方へのバランスのとれた投資は、RE 投資を促す。(c) RE への補助が低くても, 意思決定者の参照点を低くするフレーミングを行うことで、RE 投資を促し得る。

第 4 章では、エネルギー移行に関する経営戦略について新しい知見を得る試みを行った。この章では、企業の財務・CO2 指標の定量情報および、経営方針の文書情報を機械学習の手法を用いて分析し、エネルギー移行に積極的な企業の特徴を抽出することで、次の知見を得た。(i) エネルギー移行に積極的な企業は、標準的な財務指標を有している。また財務上好ましくない企業だけでなく, 財務上最優良な企業でも必ずしもエネルギー移行に積極的ではない。(ii) エネルギーシフトに積極的な企業は、事業遂行における CO2 排出源として、直接排出よりも間接排出が多いとともに、総資産に対する CO2 排出量が少ない。(iii) エネルギー移行を積極的に進めている企業は、経営方針として「自社ブランド」・「事業戦略」をより重視している傾向にある。

最後に第 5 章では、本研究で得られた主要な結果をまとめるとともに、今後の研究課題について言及した。

この論文で使われている画像

参考文献

[1] Smil V. Energy and civilization: A history. MIT Press; 2018.

[2] Kyriazis N, Metaxas T. Path dependence, change and the emergence of the first joint-stock companies. Bus Hist 2011;53:363–74. https://doi.org/10.1080/00076791.2011.565513.

[3] Smil V. Energy Transitions: Global and National Perspectives, 2nd Edition. Praeger; 2017.

[4] Ministry of Economy Trade and Industry. Energy White Paper 2021. 2021.

[5] The Federation of Electric Power Companies of Japan. Electricity Review Japan 2019. https://www.fepc.or.jp/english/library/electricity_eview_japan/ icsFiles/afieldfile/2020/03/11/ 2019ERJ_full.pdf (accessed May 10, 2020).

[6] United Nations Framework Convention on Climate Change. Paris Agreement. 2015.

[7] Ministry of Environment of Japan. Action plan of the Japanese government for global warming. 2016.

[8] McLellan B, Zhang Q, Farzaneh H, Utama NA, Ishihara KN. Resilience, Sustainability and Risk Management: A Focus on Energy. Challenges 2012;3:153–82. https://doi.org/10.3390/challe3020153.

[9] del Río P, Burguillo M. An empirical analysis of the impact of renewable energy deployment on local sustainability. Renew Sustain Energy Rev 2009;13:1314–25. https://doi.org/10.1016/j.rser.2008.08.001.

[10] Verbong GPJ, Geels FW. Exploring sustainability transitions in the electricity sector with socio-technical pathways. Technol Forecast Soc Change 2010;77:1214–21. https://doi.org/10.1016/j.techfore.2010.04.008.

[11] Knox-Hayes J. Negotiating climate legislation: Policy path dependence and coalition stabilization. Regul Gov 2012;6:545–67. https://doi.org/10.1111/j.1748-5991.2012.01138.x.

[12] Unruh GC. Escaping carbon lock-in. Energy Policy 2002;30:317–25. https://doi.org/10.1016/S0301-4215(01)00098-2.

[13] Lund P. Market penetration rates of new energy technologies. Energy Policy 2006;34:3317–26. https://doi.org/10.1016/j.enpol.2005.07.002.

[14] Geels FW. Technological transitions as evolutionary reconfiguration processes: A multi-level perspective and a case-study. Res Policy 2002;31:1257–74. https://doi.org/10.1016/S0048- 7333(02)00062-8.

[15] McLellan BC, Chapman AJ, Aoki K. Geography, urbanization and lock-in – considerations for sustainable transitions to decentralized energy systems. J Clean Prod 2016;128:77–96. https://doi.org/10.1016/j.jclepro.2015.12.092.

[16] Chapman AJ, Itaoka K. Energy Transition Pathways : Realizing a future low-carbon society in Japan 2017.

[17] Smil V. Examining energy transitions: A dozen insights based on performance. Energy Res Soc Sci 2016;22:194–7. https://doi.org/10.1016/j.erss.2016.08.017.

[18] Wilson C, Grubler A. Lessons from the history of technological change for clean energy scenarios and policies. Nat Resour Forum 2011;35:165–84. https://doi.org/10.1111/j.1477- 8947.2011.01386.x.

[19] Sovacool BK. How long will it take? Conceptualizing the temporal dynamics of energy transitions. Energy Res Soc Sci 2016;13:202–15. https://doi.org/10.1016/j.erss.2015.12.020.

[20] National Institute for Environmental Studies. National Greenhouse Gas Inventory Report of JAPAN 2020. 2020.

[21] O’Connor P. Energy Transitions. vol. 12. Boston University; 2010. https://doi.org/10.1126/science.207.4426.52.

[22] Grubler A. Energy transitions research: Insights and cautionary tales. Energy Policy 2012;50:8–16. https://doi.org/10.1016/j.enpol.2012.02.070.

[23] Turnheim B, Berkhout F, Geels F, Hof A, McMeekin A, Nykvist B, et al. Evaluating sustainability transitions pathways: Bridging analytical approaches to address governance challenges. Glob Environ Chang 2015;35:239–53. https://doi.org/10.1016/j.gloenvcha.2015.08.010.

[24] Rosenbloom D. Pathways: An emerging concept for the theory and governance of low-carbon transitions. Glob Environ Chang 2017;43:37–50. https://doi.org/10.1016/j.gloenvcha.2016.12.011.

[25] Geels FW, Berkhout F, Van Vuuren DP. Bridging analytical approaches for low-carbon transitions. Nat Clim Chang 2016;6:576–83. https://doi.org/10.1038/nclimate2980.

[26] Shiraki H, Ashina S, Kameyama Y, Moriguchi Y, Hashimoto S. Simulation analysis of renewable energy installation scenarios in Japan ’ s electricity sector in 2020 using a multi- regional optimal generation planning model. Japan Soc Energy Resour 2011;33:1–10.

[27] Komiyama R, Suzuki K, Nagatomi Y, Matsuo Y, Suehiro S. Analysis of Japan’s energy demand and supply to 2050 through integrated energy-economic model. Japan Soc Energy Resour 2012;33:34–43.

[28] Nagatomi Yu, Matsuo Yhji OJ. Analysis on Power Generation Mix in 2040 with a Model Considering Load-Frequency Control and Reserves, and Policy Implications. Japan Soc Energy Resour 2019;40.

[29] Mitani Takashi, Oda Takuya, Aziz Muhammad, Uetsuji Atsuki, Watanabe Yoko KT. Economic Analysis for Hydrogen Co-combustion by Surplus Power. Japan Soc Energy Resour 2017;38.

[30] Dohi H, Kasai M, Sugimura J. Impact Evaluation of Battery and Hydrogen Co-firing Technology under High Penetration of Renewable Energy. J Japan Soc Energy Resour 2018;39.

[31] Girod B, Wiek A, Mieg H, Hulme M. The evolution of the IPCC’s emissions scenarios. Environ Sci Policy 2009;12:103–18. https://doi.org/10.1016/j.envsci.2008.12.006.

[32] Working Group I Technical Support Unit of IPCC. Global warming of 1.5°C. 2019.

[33] Kemp R, Schot J, Hoogma R, Kemp, R., Shot, J., and Hoogma R. Regime Shift to Sustainability Through Processes of Niche Formation: The Aporach of Strategic Niche Management. Technol Anal Strateg Manag 1998;10:175.

[34] Elzen B, Hoogma R, Kemp R. Managing the Transition to Sustainable Transport Through Strategic Niche Management. Transp. Energy, Environ. Policy, 2001, p. 175–203.

[35] Verbong G, Geels F. The ongoing energy transition: Lessons from a socio-technical, multi- level analysis of the Dutch electricity system (1960-2004). Energy Policy 2007;35:1025–37. https://doi.org/10.1016/j.enpol.2006.02.010.

[36] Carlsson B, Stankiewicz R. On the nature, function and composition of tehnological systems. J Evol Econ 1991;1:93–118. https://doi.org/10.4324/9781315493053.

[37] Bergek A, Jacobsson S, Carlsson B, Lindmark S, Rickne A. Analyzing the functional dynamics of technological innovation systems: A scheme of analysis. Res Policy 2008;37:407–29. https://doi.org/10.1016/j.respol.2007.12.003.

[38] Bergek A, Jacobsson S, Hekkert M. Functions in innovation systems : and identifying goals for system-building activities by entrepreneurs and policy makers RIDE / IMIT Working Paper No . 84426-008 Functions in innovation systems : A framework for analysing energy system dynamics and ident 2006.

[39] Loorbach D, Rotmans J. The practice of transition management: Examples and lessons from four distinct cases. Futures 2010;42:237–46. https://doi.org/10.1016/j.futures.2009.11.009.

[40] Voß JP, Bornemann B. The politics of reflexive governance: Challenges for designing adaptive management and transition management. Ecol Soc 2011;16. https://doi.org/10.5751/ES-04051- 160209.

[41] Raiffa H, Tversky A. Decision Making: Descriptive, Normative, and Prescriptive Interactions. Cambridge University Press; 1988.

[42] Lepenioti K, Bousdekis A, Apostolou D, Mentzas G. Prescriptive analytics: Literature review and research challenges. Int J Inf Manage 2020;50:57–70. https://doi.org/10.1016/j.ijinfomgt.2019.04.003.

[43] Weiss M. Conceptual foudations of risk theory. United States Department of Agriculture, Economic Research Service; 1987.

[44] von Neumann J, Morgenstern O. The Theory of Games and Economic Behavior. Princeton University Press; 1944.

[45] Simon H. A BEHAVIORAL MODEL OF RATIONAL CHOICE. Q J Econ 1955;69:99–118.

[46] Kahneman D, Tversky A. PROSPECT THEORY: AN ANALYSIS OF DECISION UNDER RISK. Econometlica 1979;47:263–91.

[47] Tversky A, Kahneman D. Advances in Prospect Theory : Cumulative Representation of Uncertainty. J Risk Uncertain 1992;5:297–323.

[48] Bell DE. Regret in Decision Making under Uncertainty. Oper Res 1982;30:961–81.

[49] Fishburn PC. Non-transitive measurable utility for decision under uncertainty. J Math Econ 1989;18:187–207. https://doi.org/10.1016/0304-4068(89)90021-9.

[50] Loomes G, Sugden R. Regret Theory; An Alternative Theory of Rational Choice under Uncertainty. Econ J 1982;92:805–24.

[51] Loomes G, Sugden R. Some implications of a more general form of regret theory. J Econ Theory 1987;41:270–87. https://doi.org/10.1016/0022-0531(87)90020-2.

[52] Ahmad S, Tahar RM. Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia. Renew Energy 2014;63:458–66. https://doi.org/10.1016/j.renene.2013.10.001.

[53] Amer M, Daim TU. Selection of renewable energy technologies for a developing county: A case of Pakistan. Energy Sustain Dev 2011;15:420–35. https://doi.org/10.1016/j.esd.2011.09.001.

[54] Karger CR, Hennings W. Sustainability evaluation of decentralized electricity generation. Renew Sustain Energy Rev 2009;13:583–93. https://doi.org/10.1016/j.rser.2007.11.003.

[55] Theodorou S, Florides G, Tassou S. The use of multiple criteria decision making methodologies for the promotion of RES through funding schemes in Cyprus, A review. Energy Policy 2010;38:7783–92. https://doi.org/10.1016/j.enpol.2010.08.038.

[56] Saaty TL. Relative measurement and its generalization in decision making why pairwise comparisons are central in mathematics for the measurement of intangible factors the analytic hierarchy/network process. Rev R Spanish Acad Sci 2008;102:251–318. https://doi.org/10.1007/BF03191825.

[57] Hahn WJ. Making decisions with multiple criteria: a case in energy sustainability planning. EURO J Decis Process 2015;3:161–85. https://doi.org/10.1007/s40070-014-0025-x.

[58] McDonald R, Siegel D. The Value of Waiting to Invest. Q J Econ 1986;101:707–28.

[59] Hörnlein L. The value of gas-fired power plants in markets with high shares of renewable energy: A real options application. Energy Econ 2019;81:1078–98. https://doi.org/10.1016/j.eneco.2019.04.013.

[60] Santos L, Soares I, Mendes C, Ferreira P. Real Options versus Traditional Methods to assess Renewable Energy Projects. Renew Energy 2014;68:588–94. https://doi.org/10.1016/j.renene.2014.01.038.

[61] Zhang MM, Wang Q, Zhou D, Ding H. Evaluating uncertain investment decisions in low- carbon transition toward renewable energy. Appl Energy 2019;240:1049–60. https://doi.org/10.1016/j.apenergy.2019.01.205.

[62] Li Y, Wu M, Li Z. A real options analysis for renewable energy investment decisions under china carbon trading market. Energies 2018;11. https://doi.org/10.3390/en11071817.

[63] Masini A, Menichetti E. The impact of behavioural factors in the renewable energy investment decision making process: Conceptual framework and empirical findings. Energy Policy 2012;40:28–38. https://doi.org/10.1016/j.enpol.2010.06.062.

[64] Masini A, Menichetti E. Investment decisions in the renewable energy sector: An analysis of non-financial drivers. Technol Forecast Soc Change 2013;80:510–24. https://doi.org/10.1016/j.techfore.2012.08.003.

[65] Salm S, Hille SL, Wüstenhagen R. What are retail investors ’ risk-return preferences towards renewable energy projects ? A choice experiment in Germany. Energy Policy 2016;97:310–20. https://doi.org/10.1016/j.enpol.2016.07.042.

[66] West J, Bailey I, Winter M. Renewable energy policy and public perceptions of renewable energy: A cultural theory approach. Energy Policy 2010;38:5739–48. https://doi.org/10.1016/j.enpol.2010.05.024.

[67] Klein M, Deissenroth M. When do households invest in solar photovoltaics? An application of prospect theory. Energy Policy 2017;109:270–8. https://doi.org/10.1016/j.enpol.2017.06.067.

[68] Heutel G. Prospect theory and energy efficiency. J Environ Econ Manage 2019;96:236–54. https://doi.org/10.1016/j.jeem.2019.06.005.

[69] Block S. Are “real options” actually used in the real world? Eng Econ 2007;52:255–67. https://doi.org/10.1080/00137910701503910.

[70] Baker HK, Dutta S, Saadi S. Management Views on Real Options in Capital Budgeting. J Appl Financ 2011;21:18–29. https://doi.org/10.2139/ssrn.1617927.

[71] Summers LH. INVESTMENT INCENTIVES AND THE DISCOUNTING OF DEPRECIATION ALLOWANCES. In: Martin F, editor. Eff. Tax. Cap. Accumul., University of Chicago Press; 1987.

[72] Fernandes B, Cunha J, Ferreira P. The use of real options approach in energy sector investments. Renew Sustain Energy Rev 2011;15:4491–7. https://doi.org/10.1016/j.rser.2011.07.102.

[73] McDonald R, Siegel D. Investment and the Valuation of Firms When There is an Option to Shut Down. Int Econ Rev (Philadelphia) 1985;26:331–49.

[74] Kaslow T, Pindyck R. Valuing Flexibility In Utility Planning. Electr J 1994;7(2):60–5.

[75] Bigerna S, Wen X, Hagspiel V, Kort PM. Green electricity investments: Environmental target and the optimal subsidy. Eur J Oper Res 2019;279:635–44. https://doi.org/10.1016/j.ejor.2019.05.041.

[76] Naito Y, Takashima R, Kimura H, Madarame H. Evaluating replacement project of nuclear power plants under uncertainty. Energy Policy 2010;38:1321–9. https://doi.org/10.1016/j.enpol.2009.11.010.

[77] Glensk B, Madlener R. The value of enhanced flexibility of gas-fired power plants: A real options analysis. Appl Energy 2019;251:113125. https://doi.org/10.1016/j.apenergy.2019.04.121.

[78] Hodgkingson G, Bown N, Manule J, Glaister K, Pearman A. RESEARCH NOTES AND COMMUNICATIONS BREAKING THE FRAME : AN ANALYSIS OF STRATEGIC COGNITION AND DECISION MAKING UNDER UNCERTAINTY. Strateg Manag J 1999;985:977–85.

[79] International Organization for Standardization. Iso 14001:2015. 2015.

[80] Porter, M.E. America’s Green Strategy. Sci Am 1991:96.

[81] Porter ME, Van Der Linde C. Toward a New Conception of the Environment-Competitiveness Relationship. Source J Econ Perspect 1995;9:97–118.

[82] Palmer K, Oates WE, Portney PR, The S, Perspectives E, Autumn N, et al. Tightening Environmental Standards : The Benefit-Cost or the No-Cost Paradigm ? J Econ Perspect 1995;9:119–32.

[83] Russo M, Fouts P. A resource-based perspective on corporate environmental performance and profitability. Acad Manag J 1997;40:534–59.

[84] Konar S, Cohen MA. Does the market value environmental performance? Rev OfEconomics Stat 2001;83:281–9.

[85] Waddock S, Graves S. THE CORPORATE SOCIAL PERFORMANCE– FINANCIAL PERFORMANCE LINK. Strateg Manag J 1997;18:303–19. https://doi.org/10.1108/IJCHM- 04-2017-0195.

[86] Zhao X, Murrell A. REVISITING THE CORPORATE SOCIAL PERFORMANCE- FINANCIAL PERFORMANCE LINK: A REPLICATION OF WADDOCK AND GRAVES. Strateg Manag J 2016;37:2378–88. https://doi.org/10.1002/smj.

[87] Ariu T. Empirical analysis on relationship between CSR activities and financial performances of major Japanese companies. Japan Soc Bus Ethics Study 2015;22:79–93.

[88] Endo K. Does Stakeholder Welfare Enhance Firm Value? Econ Today 2013;34:1–36.

[89] McCauley D, Ramasar V, Heffron RJ, Sovacool BK, Mebratu D, Mundaca L. Energy justice in the transition to low carbon energy systems: Exploring key themes in interdisciplinary research. Appl Energy 2019;233–234:916–21. https://doi.org/10.1016/j.apenergy.2018.10.005.

[90] Forum WE. Davos Manifesto 2020: The Universal Purpose of a Company in the Fourth Industrial Revolution n.d. https://www.weforum.org/agenda/2019/12/davos-manifesto-2020- the-universal-purpose-of-a-company-in-the-fourth-industrial-revolution/.

[91] The Cabinet Secretariat’s National Policy Unit. Duration from planning to commercial operation n.d. https://www.cas.go.jp/jp/seisaku/npu/policy09/pdf/20111125/siryo6-1.pdf (accessed May 10, 2019).

[92] Ministry of Economy Trade and Industry. Properties of Power Plants. 2015.

[93] Kawakami Y, Komiyama R, Fujii Y. Analysis on CO 2 Reduction in Japan Using a Multi-Region Bottom-Up Energy System Model Incorporating a High-Temporal-Resolution Power Generation Sector. Japan Soc Energy Resour 2018;39.

[94] Kansai Transmission and Distribution. Historical data of electric power supply and demand in Kansai area n.d. https://www.kansai-td.co.jp/denkiyoho/area-performance.html (accessed February 16, 2019).

[95] Distribution CEPT and. Historical data of electric power supply and demand in Chugoku area n.d. https://www.energia.co.jp/nw/service/retailer/data/area/ (accessed February 16, 2019).

[96] Shikoku Electric Power Transmission & Distribution Company. Historical data of electric power supply and demand in Shikoku area n.d. https://www.yonden.co.jp/nw/renewable_energy/data/supply_demand.html (accessed February 16, 2019).

[97] Kyushu Electric Power Transmission and Distribution. Historical data of electric power supply and demand in Shikoku area n.d. https://www.kyuden.co.jp/td_service_wheeling_rule- document_disclosure.

[98] Organization for Cross-regional Coordination of Transmission Operators Japan. List of adjustment factors and L5 output ratio by area for solar, wind, self-flowing and pumped- storage hydropower to be used in the FY2020 supply plan. 2019.

[99] Denki-shinbun. Power Supply Capacity of Electric Companies (Thermal & Nuclear) 2018 (Nov. 28. 2018) 2018.

[100] Kansai Electric Power Company. Thermal Power Plants of KEPCO 2020. https://www.kepco.co.jp/energy_supply/energy/thermal_power/plant/index.html (accessed March 4, 2020).

[101] Chugoku Electric Power Company. Thermal Power Plant List n.d. https://www.energia.co.jp/energy/energy/location/index-t.html (accessed February 16, 2019).

[102] Shikoku Electric Power Company. List of Thermal Power Plants n.d. https://www.yonden.co.jp/energy/p_station/thermal/index.html (accessed February 16, 2019).

[103] Kyushu Electric Power Company. Thermal Power Plant Introduction n.d. http://www.kyuden.co.jp/effort_thirmal_k_hatsuden_index.html (accessed February 16, 2019).

[104] Ministry of Environment of Japan. Procedural status of recent thermal power plant installation projects n.d. https://www.env.go.jp/council/02policy/y0212-05/mat05.pdf (accessed August 25, 2020).

[105] Ministry of Economy Trade and Industry. Achievement of Energy Mix in 2030 2018. https://www.enecho.meti.go.jp/committee/council/basic_policy_subcommittee/025/pdf/025_008.pdf (accessed May 10, 2019).

[106] Kansai Electric Power Company. Update of Nuclear Power Plants of KEPCO:2018 2018. https://www.kepco.co.jp/ir/brief/earnings/2019/pdf/pdf2019_1029_02.pdf (accessed March 4, 2020).

[107] Ministry of Economy Trade and Industry. Future construction of hydropower n.d. https://www.enecho.meti.go.jp/category/electricity_and_gas/electric/hydroelectric/database/un der_construction002/ (accessed July 20, 2021).

[108] International Energy Agency. World Energy Outlook 2019. 2019.

[109] The Federation of Electric Power Companies of Japan. Action Plan for the Low Carbon Society of Electricity Companies. Phys Rev E 2015. http://ridum.umanizales.edu.co:8080/jspui/bitstream/6789/377/4/Muñoz_Zapata_Adriana_Patri cia_Artículo_2011.pdf (accessed February 16, 2019).

[110] Ministry of Environment of Japan. Entrusted Work Concerning the Development and Disclosure of Basic Zoning Information Concerning Renewable Energies (FY 2017). 2017.

[111] International Energy Agency. World Energy Outlook 2016. 2016.

[112] WWF Japan, Technology RI for S. Long-Term Scenarios for Decarbonizing Japan. 2017.

[113] Agency for Natural Resources and Energy. Past records of electric power statistical survey n.d. https://www.enecho.meti.go.jp/statistics/electric_power/ep002/results_archive.html (accessed November 27, 2020).

[114] Miyazaki S, Abe H, Yamaji K, Tsuzuku K. An Evaluation of kW-Value with an Analysis of Measured Data of PV Systems for Houses. IEEJ Trans Power Energy 2004;124:1293–9. https://doi.org/10.1541/ieejpes.124.1293.

[115] Ansoff HI. Corporate strategy. New York: McGraw-Hill; 1965. https://doi.org/10.4324/9780203946275.ch12.

[116] Janczak S. The strategic decision-making process in organizations. Probl Perspect Manag 2005;3:58–70.

[117] Ochi W. Theory Z : How American business can meet the Japanese challenge. Avon Books, New York; 1981.

[118] NONAKA I. Toward Middle-Up-Down Management: Accelerating Information Creation. Sloan Manage Rev 1988;29:9–18.

[119] Mom TJM, Van Den Bosch FAJ, Volberda HW. Investigating managers’ exploration and exploitation activities: The influence of top-down, bottom-up, and horizontal knowledge inflows. J Manag Stud 2007;44:910–31. https://doi.org/10.1111/j.1467-6486.2007.00697.x.

[120] Loock M. Going beyond best technology and lowest price: On renewable energy investors’ preference for service-driven business models. Energy Policy 2012;40:21–7. https://doi.org/10.1016/j.enpol.2010.06.059.

[121] Li P, Sekar S, Zhang B. A capacity-price game for uncertain renewables resources. E- Energy ’18 Proc Ninth Int Conf Futur Energy Syst 2018:119–33. https://doi.org/10.1109/tsusc.2019.2945903.

[122] Zhao D, Wang H, Huang J, Lin X. Storage or no storage: Duopoly competition between renewable energy suppliers in a local energy market. IEEE J Sel AREAS Commun 2019;38:31–47.

[123] Joskow PL. Capacity payments in imperfect electricity markets: Need and design. Util Policy 2008;16:159–70. https://doi.org/10.1016/j.jup.2007.10.003.

[124] Kansai Electric Power Company. Connected Capacity of Renewable Energy in Kansai Region 2020. https://www.kansai-td.co.jp/denkiyoho/area-performance.html (accessed March 4, 2020).

[125] Gotoh R, Tezuka T. Study on Power Supply System for Large Scale Renewable Energy Introduction under Different Strategies of Existing Power Plant Replacement. Japan Soc Energy Resour 2020;41:38–50. https://doi.org/10.24778/jjser.41.2_38.

[126] Kansai Electric Power Company. Electricity Supply and Demand Records in Kansai Region 2020. https://www.kansai-td.co.jp/denkiyoho/area-performance.html (accessed March 4, 2020).

[127] Schmidt J, Cancella R, Pereira AO. The role of wind power and solar PV in reducing risks in the Brazilian hydro-thermal power system. Energy 2016;115:1748–57. https://doi.org/10.1016/j.energy.2016.03.059.

[128] Becker S, Frew BA, Andresen GB, Jacobson MZ, Schramm S, Greiner M. Renewable build-up pathways for the US: Generation costs are not system costs. Energy 2015;81:437–45. https://doi.org/10.1016/j.energy.2014.12.056.

[129] deLlano-Paz F, Calvo-Silvosa A, Antelo SI, Soares I. Energy planning and modern portfolio theory: A review. Renew Sustain Energy Rev 2017;77:636–51. https://doi.org/10.1016/j.rser.2017.04.045.

[130] CDP, UNGC, WRI, WWF. SBTi Criteria and Recommendations 2020:1–17.

[131] The Climate Group, CDP. RE100 joining criteria n.d.:2–3.

[132] Agency FS. Electronic Disclosure for Investers’ NETwork n.d. https://disclosure.edinet- fsa.go.jp/EKW0EZ1001.html?lgKbn=1&dflg=0&iflg=0 (accessed February 22, 2020).

[133] CDP. CDP Climate Change Report 2019: Japan. 2019.

[134] WBCSD, WRI. Greenhouse Gas Protocol, A Corporate Accounting and Reporting Standard Revised Edition. n.d.

[135] WBCSD, WRI. GHG Protocol Scope 2 Guidance. n.d.

[136] Ministry of Environment of Japan, Mizuho Information & Research Institute. About Science Based Targets (SBT). 2020.

[137] Ministry of Environment of Japan, Mizuho Information & Research Institute. About RE100. 2020.

[138] The Climate Group. Renewable Energy Market Briefing Japan. 2020.

[139] Arthur D, Vassilvitskii S. k-means++: the advantages of careful seeding. Proc Eighteenth Annu ACM-SIAM Symp Discret Algorithms, Soc Ind Appl Math Philadelphia 2007:1027–35.

[140] MacQueen J. Some Methods for classification and Analysis of Multivariate Observations. Proc 5th Berkeley Symp Math Stat Probab Univ Calif Press 1967:281–97.

[141] Ishioka T. Proposal for Improvement of x-means. Japanese Soc Comput Stat 2006;18:3–13.

[142] Luhn HP. A Statistical Approach to Mechanized Encoding and Searching of Literary Information. IBM J Res Dev 1957;1:309–17. https://doi.org/10.1147/rd.14.0309.

[143] Jones KS. A Statistical Interpretation of Term Specificity and Its Application in Retrieval. J Doc 1972;28:11–21.

[144] Salton G, Buckley C. TERM-WEIGHTING APPROACHES IN AUTOMATIC TEXT RETRIEVAL. Inf Process Manag Vol 1988;24:513–23. https://doi.org/10.1163/187631286X00251.

[145] Schwartz SH. Normative influences on altruism. Adv Exp Soc Psychol 1977;10:221–79. https://doi.org/10.1016/S0065-2601(08)60358-5.

[146] Stern PC. Toward a coherent theory of environmentally significant behavior. J Soc Issues 2000;56:407–24. https://doi.org/10.1111/0022-4537.00175.

[147] Robert L.Trivers. Evolution of Reciprocal Altruism. Q Rev Biol 1971;46:35–57.

[148] Ministry of Economy Trade and Industry. Green Power Skills Standard. 2014.

[149] Lehr U, Lutz C, Edler D. Green jobs? Economic impacts of renewable energy in Germany. Energy Policy 2012;47:358–64. https://doi.org/10.1016/j.enpol.2012.04.076.

[150] International Renewable Energy Agency. Electricity storage and renewables: Costs and markets to 2030. 2017.

[151] International Energy Agency. Technology Roadmap Wind Energy 2013 edition. 2013.

[152] Ministry of Environment of Japan. List of calculation methods and emission factors 2019. https://ghg-santeikohyo.env.go.jp/files/calc/itiran2019.pdf (accessed February 22, 2020).

[153] International Energy Agency. Technology Roadmap Hydrogen and Fuel Cell. 2015.

[154] International Energy Agency. Technology Roadmap Energy Storage. 2014. https://doi.org/10.1007/springerreference_7300.

[155] Prelec D. The Probability Weighting Function. Econometrica 1998;66:497. https://doi.org/10.2307/2998573.

[156] Gonzalez R, Wu G. On the Shape of the Probability Weighting Function. Cogn Psychol 1999;166:129–66.

[157] Rieger MO, Wang M. Cumulative prospect theory and the St. Petersburg paradox. Econ Theory 2006;28:665–79. https://doi.org/10.1007/s00199-005-0641-6.

[158] Agency for Natural Resources and Energy, Organization for Cross-regional Coordination of Transmission Operators. Setting of Demand Curves 2018. https://www.occto.or.jp/iinkai/youryou/kentoukai/2018/files/youryou_kentoukai_16_04.pdf (accessed March 4, 2020).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る