リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Azacitidine is a potential therapeutic drug for pyridoxine-refractory female X-linked sideroblastic anemia」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Azacitidine is a potential therapeutic drug for pyridoxine-refractory female X-linked sideroblastic anemia

Morimoto, Yuki Chonabayashi, Kazuhisa Kawabata, Hiroshi Okubo, Chikako Yamasaki-Morita, Makiko Nishikawa, Misato Narita, Megumi Inagaki, Azusa Nakanishi, Kayoko Nagao, Miki Takaori-Kondo, Akifumi Yoshida, Yoshinori 京都大学 DOI:10.1182/bloodadvances.2021005664

2022.02.22

概要

X-linked sideroblastic anemia (XLSA) is associated with mutations in the erythroid-specific δ-aminolevulinic acid synthase (ALAS2) gene. Treatment for XLSA is mainly supportive, except in pyridoxine-responsive patients. Female XLSA often represents a late onset of severe anemia, mostly due to the acquired skewing of X-chromosome inactivation. Here, we successfully generated active wild-type and mutant ALAS2 induced pluripotent stem cell (iPSC) lines from the peripheral blood cells of an affected mother and two daughters in a family with pyridoxine-resistant XLSA due to a heterozygous ALAS2 missense mutation (R227C). The erythroid differentiation potential was severely impaired in active mutant iPSC lines compared to that in active wild-type iPSC lines. Most of the active mutant iPSC-derived erythroblasts revealed an immature morphological phenotype, and some showed dysplasia and perinuclear iron deposits. Additionally, globin and HO-1 expression and heme biosynthesis in active mutant erythroblasts were severely impaired compared to that in active wild-type erythroblasts. Furthermore, genes associated with erythroblast maturation and karyopyknosis showed significantly reduced expression in active mutant erythroblasts, recapitulating the maturation defects. Notably, the erythroid differentiation ability and hemoglobin expression of active mutant iPSC-derived hematopoietic progenitor cells (HPCs) were improved by the administration of δ-aminolevulinic acid, verifying the suitability of the cells for drug testing. Administration of a DNA demethylating agent, azacitidine, reactivated the silent wild-type ALAS2 allele in active mutant HPCs and ameliorated erythroid differentiation defects, suggesting that azacitidine is a potential novel therapeutic drug for female XLSA. Our patient-specific iPSC platform provides novel biological and therapeutic insights for XLSA.

この論文で使われている画像

参考文献

1.

Bottomley SS, Fleming MD. Sideroblastic anemia: diagnosis and management. Hematol Oncol Clin North Am. 2014;28(4):653-670, v.

2.

Yamamoto M, Yew NS, Federspiel M, Dodgson JB, Hayashi N, Engel JD. Isolation of recombinant cDNAs encoding chicken erythroid deltaaminolevulinate synthase. Proc Natl Acad Sci USA. 1985;82(11):3702-3706.

3.

Ducamp S, Fleming MD. The molecular genetics of sideroblastic anemia. Blood. 2019;133(1):59-69.

4.

Aivado M, Gattermann N, Rong A, et al. X-linked sideroblastic anemia associated with a novel ALAS2 mutation and unfortunate skewed

X-chromosome inactivation patterns. Blood Cells Mol Dis. 2006;37(1):40-45.

5.

Sankaran VG, Ulirsch JC, Tchaikovskii V, et al. X-linked macrocytic dyserythropoietic anemia in females with an ALAS2 mutation. J Clin Invest.

2015;125(4):1665-1669.

6.

Katsurada T, Kawabata H, Kawabata D, et al. A Japanese family with X-linked sideroblastic anemia affecting females and manifesting as macrocytic

anemia. Int J Hematol. 2016;103(6):713-717.

7.

Rose C, Callebaut I, Pascal L, et al. Lethal ALAS2 mutation in males X-linked sideroblastic anaemia. Br J Haematol. 2017;178(4):648-651.

8.

Cazzola M, May A, Bergamaschi G, Cerani P, Rosti V, Bishop DF. Familial-skewed X-chromosome inactivation as a predisposing factor for lateonset X-linked sideroblastic anemia in carrier females. Blood. 2000;96(13):4363-4365.

9.

Bergmann AK, Campagna DR, McLoughlin EM, et al. Systematic molecular genetic analysis of congenital sideroblastic anemia: evidence for

genetic heterogeneity and identification of novel mutations. Pediatr Blood Cancer. 2010;54(2):273-278.

22 FEBRUARY 2022 • VOLUME 6, NUMBER 4

XLSA AMELIORATION BY THE DEMETHYLATING AGENT AZA

1113

Downloaded from http://ashpublications.org/bloodadvances/article-pdf/6/4/1100/1870480/advancesadv2021005664.pdf by guest on 22 June 2022

Last, we focused on the unusual disease mechanism of XLSA in

females, which is caused by the acquired skewing of X-chromosome

inactivation in hematopoietic stem cells. We speculated that the restoration of the expression of WT ALAS2 in a considerable number

of affected erythroblasts could ameliorate disease phenotypes in

female patients with XLSA. This study provides the first proof of concept that the silent WT ALAS2 allele in female subjects could be

partially reactivated by the DNA demethylating agent AZA, which

serves as a potential novel therapeutic approach for the treatment of

refractory anemia in female patients with XLSA (Figure 7). Although

the demethylating effect of AZA is global and off-target side effects

may occur in both hematopoietic and nonhematopoietic tissues,

AZA is currently being used in clinical practice to treat hematological malignancies and has shown acceptable adverse effects. However, the efficacy of AZA in our XLSA model is limited, and further

studies using DNA demethylating agents are needed for future

therapeutic use.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

10. Ohba R, Furuyama K, Yoshida K, et al. Clinical and genetic characteristics of congenital sideroblastic anemia: comparison with myelodysplastic

syndrome with ring sideroblast (MDS-RS). Ann Hematol. 2013;92(1):1-9.

11. Astner I, Schulze JO, van den Heuvel J, Jahn D, Schubert WD, Heinz DW. Crystal structure of 5-aminolevulinate synthase, the first enzyme of heme

biosynthesis, and its link to XLSA in humans. EMBO J. 2005;24(18):3166-3177.

12. Ishida H, Imamura T, Morimoto A, Fujiwara T, Harigae H. Five-aminolevulinic acid: New approach for congenital sideroblastic anemia. Pediatr Int

(Roma). 2018;60(5):496-497.

13. Nakajima O, Takahashi S, Harigae H, et al. Heme deficiency in erythroid lineage causes differentiation arrest and cytoplasmic iron overload. EMBO

J. 1999;18(22):6282-6289.

14. Nakajima O, Okano S, Harada H, et al. Transgenic rescue of erythroid 5-aminolevulinate synthase-deficient mice results in the formation of ring sideroblasts and siderocytes. Genes Cells. 2006;11(6):685-700.

16. Hatta S, Fujiwara T, Yamamoto T, et al. A defined culture method enabling the establishment of ring sideroblasts from induced pluripotent cells of

X-linked sideroblastic anemia. Haematologica. 2018;103(5):e188-e191.

17. Kaneko K, Kubota Y, Nomura K, et al. Establishment of a cell model of X-linked sideroblastic anemia using genome editing. Exp Hematol. 2018;65:

57-68.e2.

18. Saito K, Fujiwara T, Hatta S, et al. Generation and Molecular Characterization of Human Ring Sideroblasts: a Key Role of Ferrous Iron in Terminal

Erythroid Differentiation and Ring Sideroblast Formation. Mol Cell Biol. 2019;39(7):e00387-18.

19. Okita K, Yamakawa T, Matsumura Y, et al. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord

blood and peripheral blood cells. Stem Cells. 2013;31(3):458-466.

20. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;

126(4):663-676.

21. Boudewijns M, van Dongen JJ, Langerak AW. The human androgen receptor X-chromosome inactivation assay for clonality diagnostics of natural

killer cell proliferations. J Mol Diagn. 2007;9(3):337-344.

22. Allen RC, Zoghbi HY, Moseley AB, Rosenblatt HM, Belmont JW. Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the

human androgen-receptor gene correlates with X chromosome inactivation. Am J Hum Genet. 1992;51(6):1229-1239.

23. Grigoriadis AE, Kennedy M, Bozec A, et al. Directed differentiation of hematopoietic precursors and functional osteoclasts from human ES and iPS

cells. Blood. 2010;115(14):2769-2776.

24. Nishizawa M, Chonabayashi K, Nomura M, et al. Epigenetic Variation between Human Induced Pluripotent Stem Cell Lines Is an Indicator of

Differentiation Capacity. Cell Stem Cell. 2016;19(3):341-354.

25. Kurita R, Suda N, Sudo K, et al. Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells.

PLoS One. 2013;8(3):e59890.

26. Kotini AG, Chang CJ, Chow A, et al. Stage-Specific Human Induced Pluripotent Stem Cells Map the Progression of Myeloid Transformation to

Transplantable Leukemia. Cell Stem Cell. 2017;20(3):315-328.e7.

27. Tokutomi T, Fukushima A, Yamamoto K, Bansho Y, Hachiya T, Shimizu A. f-treeGC: a questionnaire-based family tree-creation software for genetic

counseling and genome cohort studies. BMC Med Genet. 2017;18(1):71.

28. Huang P, Zhao Y, Zhong J, et al. Putative regulators for the continuum of erythroid differentiation revealed by single-cell transcriptome of human

BM and UCB cells. Proc Natl Acad Sci USA. 2020;117(23):12868-12876.

29. Ng KM, Mok PY, Butler AW, et al. Amelioration of X-Linked Related Autophagy Failure in Danon Disease With DNA Methylation Inhibitor. Circulation. 2016;134(18):1373-1389.

30. Donker AE, Raymakers RA, Nieuwenhuis HK, et al. X-linked sideroblastic anaemia due to ALAS2 mutations in the Netherlands: a disease in

disguise. Neth J Med. 2014;72(4):210-217.

31. Cotter PD, May A, Fitzsimons EJ, et al. Late-onset X-linked sideroblastic anemia. Missense mutations in the erythroid delta-aminolevulinate synthase

(ALAS2) gene in two pyridoxine-responsive patients initially diagnosed with acquired refractory anemia and ringed sideroblasts. J Clin Invest. 1995;

96(4):2090-2096.

32. Fujiwara T, Fukuhara N, Ichikawa S, et al. A novel heterozygous ALAS2 mutation in a female with macrocytic sideroblastic anemia resembling

myelodysplastic syndrome with ring sideroblasts: a case report and literature review. Ann Hematol. 2017;96(11):1955-1957.

33. Ananiev G, Williams EC, Li H, Chang Q. Isogenic pairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from Rett syndrome

patients as in vitro disease model. PLoS One. 2011;6(9):e25255.

34. Reboun

M, Rybov

a J, Dobrovolny R, et al. X-Chromosome Inactivation Analysis in Different Cell Types and Induced Pluripotent Stem Cells

Elucidates the Disease Mechanism in a Rare Case of Mucopolysaccharidosis Type II in a Female. Folia Biol (Praha). 2016;62(2):82-89.

35. Trakarnsanga K, Wilson MC, Heesom KJ, Andrienko TN, Srisawat C, Frayne J. Secretory factors from OP9 stromal cells delay differentiation and

increase the expansion potential of adult erythroid cells in vitro. Sci Rep. 2018;8(1):1983.

36. Fujiwara T, Okamoto K, Niikuni R, et al. Effect of 5-aminolevulinic acid on erythropoiesis: a preclinical in vitro characterization for the treatment of

congenital sideroblastic anemia. Biochem Biophys Res Commun. 2014;454(1):102-108.

1114

MORIMOTO et al

22 FEBRUARY 2022 • VOLUME 6, NUMBER 4

Downloaded from http://ashpublications.org/bloodadvances/article-pdf/6/4/1100/1870480/advancesadv2021005664.pdf by guest on 22 June 2022

15. Harigae H, Nakajima O, Suwabe N, et al. Aberrant iron accumulation and oxidized status of erythroid-specific delta-aminolevulinate synthase

(ALAS2)-deficient definitive erythroblasts. Blood. 2003;101(3):1188-1193.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る