リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Registration of Positron Emission Tomography (PET) image & Functional Near Infrared Spectroscopy (fNIRS) data」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Registration of Positron Emission Tomography (PET) image & Functional Near Infrared Spectroscopy (fNIRS) data

ファイルス ビンティ モハマナシー 東北大学

2020.09.25

概要

Functional Near-Infrared Spectroscopy (fNIRS) and Positron Emission Tomography (PET) is the imaging technique that gives functional information, especially for imaging the brain activity. The objective of this PhD project is to register fNIRS signals on the PET image. fNIRS measures oxyhaemoglobin and deoxyhaemoglobin in blood while PET measure the physiological function of the human body such as measuring the glucose consumption in the active area of the brain. fNIRS has high temporal resolution while the PET image has better spatial resolution compared to fNIRS. However, fNIRS measures haemodynamic changes in the cortex region but not in deeper brain structures. Thus, the proposed registration methods of fNIRS and PET is to improve the specificity given by both methods. The registration is based on a hardware-based system which used an optical tracking system; Polaris. The proposed method was validated using a fNIRS-PET phantom. Thereafter, the registration of fNIRS on PET image was performed on eleven subjects where each subject undergoes fNIRS examination along with the fNIRS task and then PET scan. To register the fNIRS probe on the PET image, we did a several series of the transformation of fNIRS probe coordinate into the PET coordinate. Polaris markers were used as the references marker to determine the transformation matrixes. The fNIRS probe was registered on the PET image using the in-house software and the activation area during the fNIRS task can be view on the PET image. The registration done in this study is successful as we can view the fNIRS activation area on the PET image.

この論文で使われている画像

参考文献

Arai, H., Takano, M., Miyakawa, K., Ota, T., Takahashi, T., Asaka, H., & Kawaguchi, T. (2006). A quantitative near-infrared spectroscopy study: A decrease in cerebral hemoglobin oxygenation in Alzheimer’s disease and mild cognitive impairment. Brain and Cognition, 61(2), 189–194. https://doi.org/10.1016/j.bandc.2005.12.012

Cachovan, M., Vija, A. H., Healthineers, S., Hornegger, J., & Kuwert, T. (2013). Quantification of 99m Tc-DPD concentration in the lumbar spine with SPECT / CT, (June). https://doi.org/10.1186/2191-219X-3-45

Chiarelli, A. M., Zappasodi, F., Di Pompeo, F., & Merla, A. (2017). Simultaneous functional near-infrared spectroscopy and electroencephalography for monitoring of human brain activity and oxygenation: a review. Neurophotonics, 4(04), 1. https://doi.org/10.1117/1.NPh.4.4.041411

Chou, P. H., & Lan, T. H. (2013). The role of near-infrared spectroscopy in Alzheimer’s disease. Journal of Clinical Gerontology and Geriatrics, 4(2), 33–36. https://doi.org/10.1016/j.jcgg.2013.01.002

Cui, X., Bray, S., Bryant, D. M., Glover, G. H., & Reiss, A. L. (2011). A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. NeuroImage, 54(4), 2808–2821. https://doi.org/10.1016/j.neuroimage.2010.10.069

Duan, L., Zhang, Y. J., & Zhu, C. Z. (2012). Quantitative comparison of resting-state functional connectivity derived from fNIRS and fMRI: A simultaneous recording study. NeuroImage, 60(4), 2008–2018. https://doi.org/10.1016/j.neuroimage.2012.02.014

Ehlis, A. C., Ringel, T. M., Plichta, M. M., Richter, M. M., Herrmann, M. J., & Fallgatter, A. J. (2009). Cortical correlates of auditory sensory gating: A simultaneous near-infrared spectroscopy event-related potential study. Neuroscience, 159(3), 1032–1043. https://doi.org/10.1016/j.neuroscience.2009.01.015

El-Zahraa, F., El-Gamal, A., Elmogy, M., & Atwan, A. (2015). Current trends in medical image registration and fusion. Egyptian Informatics Journal, 17(1), 99–124. https://doi.org/10.1016/j.eij.2015.09.002

Ferrari, M., & Quaresima, V. (2012). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage, 63(2), 921–935. https://doi.org/10.1016/j.neuroimage.2012.03.049

Fitzpatrick, J. M., Hill, D. L. G., & Maurer, C. R. (2004). CHAPTER 8 Image Registration. In Mi. Sonka & J. Mi. Fitzpatrick (Eds.), Handbook of Medical Imaging (volume 2, pp. 447–514). SPIE-The international Society for Optical Engineering.

Gervain, J. (2015). Near-Infrared Spectroscopy. International Encyclopedia of the Social & Behavioral Sciences (Second Edi, Vol. 16). Elsevier. https://doi.org/10.5772/32493

Gong, S. J., Keefe, G. J. O., & Scott, A. M. (2005). Comparison and E Valuation of Pet / Ct I Mage Registration, 1599–1603.

Gore, J. C. J. C. (2003). Principles and practice of functional MRI of the human brain. Journal of Clinical Investigation, 112(1), 4–9. https://doi.org/10.1172/JCI200319010.Conventional

Hartwig, V., Guiducci, L., Marinelli, M., Pistoia, L., Tegrimi, T. M., Iervasi, G., … L’Abbate, A. (2017). Multimodal Imaging for the Detection of Brown Adipose Tissue Activation in Women: A Pilot Study Using NIRS and Infrared Thermography. Journal of Healthcare Engineering, 2017. https://doi.org/10.1155/2017/5986452

Heinzel, S., Haeussinger, F. B., Hahn, T., Ehlis, A. C., Plichta, M. M., & Fallgatter, A.J. (2013). Variability of (functional) hemodynamics as measured with simultaneous fNIRS and fMRI during intertemporal choice. NeuroImage, 71, 125–134. https://doi.org/10.1016/j.neuroimage.2012.12.074

Hock, C., Villringer, K., Müller-Spahn, F., Wenzel, R., Heekeren, H., Schuh-Hofer, S.,… Villringer, A. (1997). Decrease in parietal cerebral hemoglobin oxygenation during performance of a verbal fluency task in patients with Alzheimer’s disease monitored by means of near-infrared spectroscopy (NIRS) - Correlation with simultaneous rCBF-PET measurements. Brain Research, 755(2), 293–303. https://doi.org/10.1016/S0006-8993(97)00122-4

Hoshi, Y., & Tamura, M. (2017). Dynamic multichannel near-infrared optical imaging of human brain activity. Journal of Applied Physiology, 75(4), 1842–1846. https://doi.org/10.1152/jappl.1993.75.4.1842

Hoshi, Yoko, & Tamura, M. (1993). Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man. Neuroscience Letters, 150(1), 5–8. https://doi.org/10.1016/0304-3940(93)90094-2

Huppert, T. J., Diamond, S. G., Franceschini, M. a, & Boas, D. a. (2009). HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain. Applied Optics, 48(10), D280–D298. https://doi.org/10.1364/AO.48.00D280

Introduction to PET Physics: The physical principles of PET. (n.d.). Retrieved July 3, 2015, from http://depts.washington.edu/nucmed/IRL/pet_intro/intro_src/section2.html

Irani, F., Platek, S. M., Bunce, S., Ruocco, A. C., & Chute, D. (2007). Functional near infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important applications for the study of brain disorders. The Clinical Neuropsychologist, 21(1), 9–37. https://doi.org/10.1080/13854040600910018

Karim, H., Schmidt, B., Dart, D., Beluk, N., & Huppert, T. (2012). Functional near- infrared spectroscopy (fNIRS) of brain function during active balancing using a video game system. Gait and Posture, 35(3), 367–372. https://doi.org/10.1016/j.gaitpost.2011.10.007

Kikuchi, A., Nasir, F. M. N., Inami, A., Mohsen, A., Watanuki, S., Miyake, M., … Tashiro, M. (2018). Effects of levocetirizine and diphenhydramine on regional glucose metabolic changes and hemodynamic responses in the human prefrontal cortex during cognitive tasks. Human Psychopharmacology, 33(2), 1–16. https://doi.org/10.1002/hup.2655

Kleinschmidt, A., Obrig, H., Requardt, M., Merboldt, K., Dirnagl, U., Villringer, A., & Frahm, J. (1996). Simultaneous Recording of Cerebral Blood Oxygenation Changes During Human Brain Activation by Magnetic Resonance Imaging and Near-Infrared Spectroscopy, 817–826.

Lee, S. Y., Jeon, S. I., Jung, S., Chung, I. J., & Ahn, C. H. (2014). Targeted multimodal imaging modalities. Advanced Drug Delivery Reviews, 76(1), 60–78. https://doi.org/10.1016/j.addr.2014.07.009

León-carrión, J., & León-domínguez, U. (2012). Functional near-infrared spectroscopy (fNIRS): principles and neuroscientific applications. In Neuroimaging e Methods. https://doi.org/10.5772/23146

Lin, C.-T., King, J.-T., Chuang, C.-H., Ding, W., Chuang, W.-Y., Liao, L.-D., & Wang, Y.-K. (2019). Exploring the Brain Responses to Driving Fatigue Through Simultaneous EEG and FNIRS Measurements. International Journal of Neural Systems, 1950018, 1–12. https://doi.org/10.1142/s0129065719500187

Maggioni, E., Molteni, E., Zucca, C., Reni, G., Cerutti, S., Triulzi, F. M., … Bianchi, A. M. (2015). Investigation of negative BOLD responses in human brain through NIRS technique. A visual stimulation study. NeuroImage, 108, 410–422. https://doi.org/10.1016/j.neuroimage.2014.12.074

Magnotta, V. A., Buss, A. T., Huppert, T. J., Spencer, J. P., & Wijeakumar, S. (2016). Validating an image-based fNIRS approach with fMRI and a working memory task. NeuroImage, 147(December 2015), 204–218. https://doi.org/10.1016/j.neuroimage.2016.12.007

Maintz, J. B. A., & Viergever, M. a. (1996). An Overview of Medical Image Registration Methods (Cited by: 2654). Nature, 12(6), 1–22. https://doi.org/10.1.1.39.4417

Merzagora, A. C., Izzetoglu, M., Polikar, R., Weisser, V., Onaral, B., & Schultheis, M.T. (2009). Functional near-infrared spectroscopy and electroencephalography: A multimodal imaging approach. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5638 LNAI, 417–426. https://doi.org/10.1007/978-3-642-02812- 0_50

Mintun, M. A., Lundstrom, B. N., Snyder, A. Z., Vlassenko, A. G., Shulman, G. L., & Raichle, M. E. (2001). Blood flow and oxygen delivery to human brain during functional activity : Theoretical modeling and experimental data, 98(12), 6859– 6864.

Natrajan, C., Harisankar, B., John, J., & Gangadharan, K. V. (2015). Case Report Fluoro deoxyglucose positron emission tomography ‑ computerized tomography in primary staging and response assessment of a rare case of primary pleural synovial sarcoma, 30(1), 62–65. https://doi.org/10.4103/0972-3919.147547

Nielsen, H. B., Boesen, M., & Secher, N. H. (2001). Near-infrared spectroscopy determined brain and muscle oxygenation during exercise with normal and resistive breathing. Acta Physiologica Scandinavica, 171(1), 63–70. https://doi.org/10.1046/j.1365-201X.2001.171001063.x

Okamoto, M., & Dan, I. (2005). Automated cortical projection of head-surface locations for transcranial functional brain mapping. NeuroImage, 26(1), 18–28. https://doi.org/10.1016/j.neuroimage.2005.01.018

Perrey, S. (2008). Non-invasive NIR spectroscopy of human brain function during exercise. Methods, 45(4), 289–299. https://doi.org/10.1016/j.ymeth.2008.04.005

Piper, S. K., Krueger, A., Koch, S. P., Mehnert, J., Habermehl, C., Steinbrink, J., … Schmitz, C. H. (2014). A wearable multi-channel fNIRS system for brain imaging in freely moving subjects. NeuroImage, 85, 64–71. https://doi.org/10.1016/j.neuroimage.2013.06.062

Polinder-Bos, H. A., Elting, J. W. J., Aries, M. J. H., García, D. V., Willemsen, A. T. M., van Laar, P. J., … Franssen, C. F. M. (2018). Changes in cerebral oxygenation and cerebral blood flow during hemodialysis – A simultaneous near-infrared spectroscopy and positron emission tomography study. Journal of Cerebral Blood Flow and Metabolism. https://doi.org/10.1177/0271678X18818652

Rostrup, E., Law, I., Pott, F., Ide, K., & Knudsen, G. M. (2002). Cerebral hemodynamics measured with simultaneous PET and near-infrared spectroscopy in humans. Brain Research, 954(2), 183–193. https://doi.org/10.1016/S0006- 8993(02)03246-8

Sato, H., Yahata, N., Funane, T., Takizawa, R., Katura, T., Atsumori, H., … Kasai, K. (2013). A NIRS-fMRI investigation of prefrontal cortex activity during a working memory task. NeuroImage, 83, 158–173. https://doi.org/10.1016/j.neuroimage.2013.06.043

Sauter, A. W., Wehrl, H. F., Kolb, A., Judenhofer, M. S., & Pichler, B. J. (2010). Combined PET/MRI: One step further in multimodality imaging. Trends in Molecular Medicine, 16(11), 508–515. https://doi.org/10.1016/j.molmed.2010.08.003

Scarapicchia, V., Brown, C., Mayo, C., & Gawryluk, J. R. (2017). Functional Magnetic Resonance Imaging and Functional Near-Infrared Spectroscopy: Insights from Combined Recording Studies. Frontiers in Human Neuroscience, 11(August), 1–12. https://doi.org/10.3389/fnhum.2017.00419

Shin, J., Von Lühmann, A., Kim, D. W., Mehnert, J., Hwang, H. J., & Müller, K. R. (2018). Data descriptor: Simultaneous acquisition of EEG and NIRS during cognitive tasks for an open access dataset. Scientific Data, 5, 1–16. https://doi.org/10.1038/sdata.2018.3

Slough, C., Masters, S. C., Hurley, R. A., & Taber, K. H. (2016). Clinical positron emission tomography (PET) neuroimaging: Advantages and limitations as a diagnostic tool. Journal of Neuropsychiatry and Clinical Neurosciences, 28(2), 66–71. https://doi.org/10.1176/appi.neuropsych.16030044

Steinbrink, J., Villringer, A., Kempf, F., Haux, D., Boden, S., & Obrig, H. (2006). Illuminating the BOLD signal: combined fMRI-fNIRS studies. Magnetic Resonance Imaging, 24(4), 495–505. https://doi.org/10.1016/j.mri.2005.12.034

Tai, Y., & Piccini, P. (2004). Applications of positron emission tomography (PET) in neurology. Journal of Neurology, Neurosurgery, and Psychiatry, 75(5), 669–676. https://doi.org/10.1136/jnnp.2003.028175

Tak, S., Yoon, S. J., Jang, J., Yoo, K., Jeong, Y., & Ye, J. C. (2011). Quantitative analysis of hemodynamic and metabolic changes in subcortical vascular dementia using simultaneous near-infrared spectroscopy and fMRI measurements. NeuroImage, 55(1), 176–184. https://doi.org/10.1016/j.neuroimage.2010.11.046

Takahashi, T., Takikawa, Y., Kawagoe, R., Shibuya, S., Iwano, T., & Kitazawa, S. (2011). Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task. NeuroImage, 57(3), 991– 1002. https://doi.org/10.1016/j.neuroimage.2011.05.012

Teplan, M. (2002). Fundamentals of EEG measurement. Measurement Science Review, 2(2), 1–11. https://doi.org/10.1021/pr070350l

Tsuzuki, D., & Dan, I. (2014). Spatial registration for functional near-infrared spectroscopy: From channel position on the scalp to cortical location in individual and group analyses. NeuroImage, 85, 92–103. https://doi.org/10.1016/j.neuroimage.2013.07.025

Vanhatalo, S., Tallgren, P., Becker, C., Holmes, M. D., Miller, J. W., Kaila, K., & Voipio, J. (2003). Scalp-recorded slow EEG responses generated in response to hemodynamic changes in the human brain. Clinical Neurophysiology, 114(9), 1744–1754. https://doi.org/10.1016/S1388-2457(03)00163-9

Villringer, A., Planck, J., Hock, C., Schleinkofer, L., & Dirnagl, U. (1993). Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults. Neuroscience Letters, 154(1–2), 101–104. https://doi.org/10.1016/0304-3940(93)90181-J

Wallois, F., Mahmoudzadeh, M., Patil, A., & Grebe, R. (2012). Usefulness of simultaneous EEG-NIRS recording in language studies. Brain and Language, 121(2), 110–123. https://doi.org/10.1016/j.bandl.2011.03.010

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る