リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Correlating functional near-infrared spectroscopy with underlying brain regions for adult and infant populations by theoretical light propagation analysis (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Correlating functional near-infrared spectroscopy with underlying brain regions for adult and infant populations by theoretical light propagation analysis (本文)

蔡, 林 慶應義塾大学

2021.09.21

概要

Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging modality that assesses neural activity by measuring changes in oxygenated and deoxygenated hemoglobin after positioning single/multiple source-detector (SD) pairs over the human scalp. In the past few decades, fNIRS has widely been used to investigate the function of the adult brain and developing brain in the field of cognitive neuroscience. The fast growth of fNIRS studies is due to the several advantages that fNIRS is highly portable and has a relatively robust tolerance for body movements, which is suitable for different experimental settings and various populations including neonates, children, and adults. However, it remains a challenge for fNIRS to target specific brain regions of interest by the positioning of SD pairs on the scalp. Since fNIRS data does not provide any anatomical information on the cerebral cortex, it is extremely important to establish a scalp-cortex correlation (SCC) between the scalp location of the SD pair and brain regions for measuring brain functions. Given that the near-infrared light is strongly scattered in head tissues, the objective of this thesis is to establish the precise optics-based SCC using the light propagation analysis based on the diffusion equation for the adult and infant populations.

Chapter 1 describes the purpose and background of this thesis.

Chapter 2 validates that the diffusion approximation is a highly efficient and robust light propagation analysis methodology, which can be used to obtain the precise optics- based SCC, by comparing optics-based SCC results obtained by the finite element method and Monte Carlo method that is viewed as the gold standard method.

Chapter 3 proposes a sensitivity-based matching (SBM) method to establish the optics-based SCC for 45 subject-specific adult head models. Furthermore, when the SCC was computed, the performance of the SBM method was compared with that of three conventional geometrical matching methods ignoring the effect of light scattering. The results demonstrate that the light scattering and individual anatomical differences in the head affect the SCC, which further indicates that the SBM method is compulsory to obtain the precise SCC.

Chapter 4 aims to establish optics-based SCC for 0-, 1-, 2-year-old infants using the SBM method, and to determine the optimal SD distance for this age period, during which the most dynamic growth in head structures and remarkable cognitive changes occur.

Chapter 5 summarizes the main findings of this thesis and presents conclusions with future works.

この論文で使われている画像

参考文献

Amunts, K., Schleicher, A., & Zilles, K. (2007). Cytoarchitecture of the cerebral cortex—more than localization. Neuroimage, 37(4), 1061-1065.

Anderson, C. A., Wiggins, I. M., Kitterick, P. T., & Hartley, D. E. H. (2017). Adaptive benefit of cross- modal plasticity following cochlear implantation in deaf adults. Proc Natl Acad Sci U S A, 114(38), 10256-10261. doi:10.1073/pnas.1704785114

Arridge, S. R. (1999). Optical tomography in medical imaging. Inverse problems, 15(2), R41.

Arridge, S. R., & Schweiger, M. (1995). Photon-measurement density functions. Part 2: Finite-element- method calculations. Appl Opt, 34(34), 8026-8037. doi:10.1364/AO.34.008026

Arridge, S. R., Schweiger, M., Hiraoka, M., & Delpy, D. T. (1993). A finite element approach for modeling photon transport in tissue. Medical Physics, 20(2 Pt 1), 299-309. doi:10.1118/1.597069

Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage, 38(1), 95-113. doi:10.1016/j.neuroimage.2007.07.007

Auzias, G., Colliot, O., Glaunes, J. A., Perrot, M., Mangin, J. F., Trouve, A., & Baillet, S. (2011). Diffeomorphic brain registration under exhaustive sulcal constraints. IEEE Trans Med Imaging, 30(6), 1214-1227. doi:10.1109/TMI.2011.2108665

Baillet, S. (2017). Magnetoencephalography for brain electrophysiology and imaging. Nature Neuroscience, 20(3), 327-339.

Bakeman, R. (2005). Recommended effect size statistics for repeated measures designs. Behav Res Methods, 37(3), 379-384. doi:10.3758/bf03192707

Baumann, S. B., Wozny, D. R., Kelly, S. K., & Meno, F. M. (1997). The electrical conductivity of human cerebrospinal fluid at body temperature. Ieee Transactions on Biomedical Engineering, 44(3), 220- 223.

Beauchamp, M. S., Beurlot, M. R., Fava, E., Nath, A. R., Parikh, N. A., Saad, Z. S., . . . Oghalai, J. S. (2011). The Developmental Trajectory of Brain-Scalp Distance from Birth through Childhood: Implications for Functional Neuroimaging. Plos One, 6(9). doi:ARTN e24981 10.1371/journal.pone.0024981

Bevilacqua, F., Piguet, D., Marquet, P., Gross, J. D., Tromberg, B. J., & Depeursinge, C. (1999). In vivo local determination of tissue optical properties: applications to human brain. Applied Optics, 38(22), 4939-4950. doi:Doi 10.1364/Ao.38.004939

Blume, W. T., Buza, R. C., & Okazaki, H. (1974). Anatomic correlates of the ten-twenty electrode placement system in infants. Electroencephalogr Clin Neurophysiol, 36(3), 303-307. doi:10.1016/0013-4694(74)90172-2

Boas, D. A., Elwell, C. E., Ferrari, M., & Taga, G. (2014). Twenty years of functional near-infrared spectroscopy: introduction for the special issue. Neuroimage, 85, 1-5. doi:10.1016/j.neuroimage.2013.11.033

Brigadoi, S., Aljabar, P., Kuklisova-Murgasova, M., Arridge, S. R., & Cooper, R. J. (2014). A 4D neonatal head model for diffuse optical imaging of pre-term to term infants. Neuroimage, 100, 385-394. doi:10.1016/j.neuroimage.2014.06.028

Brigadoi, S., & Cooper, R. J. (2015). How short is short? Optimum source-detector distance for short- separation channels in functional near-infrared spectroscopy. Neurophotonics, 2(2), 025005. doi:10.1117/1.NPh.2.2.025005

Brodmann, K. (2007). Brodmann's: Localisation in the cerebral cortex: Springer Science & Business Media.

Bulgarelli, C., de Klerk, C. C., Richards, J. E., Southgate, V., Hamilton, A., & Blasi, A. (2020). The developmental trajectory of fronto‐temporoparietal connectivity as a proxy of the default mode network: a longitudinal fNIRS investigation. Human Brain Mapping.

Buzsáki, G., Anastassiou, C. A., & Koch, C. (2012). The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nature Reviews Neuroscience, 13(6), 407-420.

Cai, L., Dong, Q., & Niu, H. J. (2018). The development of functional network organization in early childhood and early adolescence: A resting-state fNIRS study. Developmental Cognitive Neuroscience, 30, 223-235. doi:10.1016/j.dcn.2018.03.003

Cai, L., Dong, Q., Wang, M. J., & Niu, H. J. (2019). Functional near-infrared spectroscopy evidence for the development of topological asymmetry between hemispheric brain networks from childhood to adulthood. Neurophotonics, 6(2). doi:ARTN 025005 10.1117/1.NPh.6.2.025005

Capart, A., Ikegaya, S., Okada, E., Machida, M., & Hoshi, Y. (2021). Experimental tests of indicators for the degree of validness of the diffusion approximation. Journal of Physics Communications, 5(2), 025012.

Chen, M., Blumen, H. M., Izzetoglu, M., & Holtzer, R. (2017). Spatial coregistration of functional near‐ infrared spectroscopy to brain MRI. Journal of Neuroimaging, 27(5), 453-460.

Cheong, W.-F., Prahl, S. A., & Welch, A. J. (1990). A review of the optical properties of biological tissues. IEEE journal of quantum electronics, 26(12), 2166-2185.

Chuang, C. C., Chen, C. M., Hsieh, Y. S., Liu, T. C., & Sun, C. W. (2013). Brain structure and spatial sensitivity profile assessing by near-infrared spectroscopy modeling based on 3D MRI data. Journal of Biophotonics, 6(3), 267-274. doi:10.1002/jbio.201200025

Cooper, R. J., Caffini, M., Dubb, J., Fang, Q. Q., Custo, A., Tsuzuki, D., . . . Boas, D. A. (2012). Validating atlas-guided DOT: A comparison of diffuse optical tomography informed by atlas and subject- specific anatomies. Neuroimage, 62(3), 1999-2006. doi:10.1016/j.neuroimage.2012.05.031

Cope, M., Delpy, D. T., Reynolds, E. O., Wray, S., Wyatt, J., & van der Zee, P. (1988). Methods of quantitating cerebral near infrared spectroscopy data. Advance in Experimental Medicine and Biology, 222, 183-189.

Culver, J. P., Siegel, A. M., Stott, J. J., & Boas, D. A. (2003). Volumetric diffuse optical tomography of brain activity. Optics letters, 28(21), 2061-2063.

Custo, A., Boas, D. A., Tsuzuki, D., Dan, I., Mesquita, R., Fischl, B., . . . Wells, W. (2010). Anatomical atlas-guided diffuse optical tomography of brain activation. Neuroimage, 49(1), 561-567. doi:10.1016/j.neuroimage.2009.07.033

Cutini, S., Scatturin, P., & Zorzi, M. (2011). A new method based on ICBM152 head surface for probe placement in multichannel fNIRS. Neuroimage, 54(2), 919-927.

De Boer, H. H., Van der Merwe, A. L., & Soerdjbalie-Maikoe, V. V. (2016). Human cranial vault thickness in a contemporary sample of 1097 autopsy cases: relation to body weight, stature, age, sex and ancestry. International journal of legal medicine, 130(5), 1371-1377.

Dehaes, M., Gagnon, L., Lesage, F., Pélégrini-Issac, M., Vignaud, A., Valabrègue, R., . . . Benali, H. (2011a). Quantitative investigation of the effect of the extra-cerebral vasculature in diffuse optical imaging: a simulation study. Biomedical Optics Express, 2(3), 680-695.

Dehaes, M., Grant, P. E., Sliva, D. D., Roche-Labarbe, N., Pienaar, R., Boas, D. A., . . . Selb, J. (2011b). Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult. Biomedical Optics Express, 2(3), 552-567. doi:Doi 10.1364/Boe.2.000552

Dehaes, M., Kazemi, K., Pelegrini-Issac, M., Grebe, R., Benali, H., & Wallois, F. (2013). Quantitative effect of the neonatal fontanel on synthetic near infrared spectroscopy measurements. Human Brain Mapping, 34(4), 878-889. doi:10.1002/hbm.21483

Dehghani, H., Eames, M. E., Yalavarthy, P. K., Davis, S. C., Srinivasan, S., Carpenter, C. M., . . . Paulsen, K. D. (2009). Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction. Communications in Numerical Methods in Engineering, 25(6), 711-732. doi:10.1002/cnm.1162

Delpy, D. T., Cope, M., Vanderzee, P., Arridge, S., Wray, S., & Wyatt, J. (1988). Estimation of Optical Pathlength through Tissue from Direct Time of Flight Measurement. Physics in Medicine and Biology, 33(12), 1433-1442. doi:Doi 10.1088/0031-9155/33/12/008

Delye, H., Clijmans, T., Mommaerts, M. Y., Sloten, J. V., & Goffin, J. (2015). Creating a normative database of age-specific 3D geometrical data, bone density, and bone thickness of the developing skull: a pilot study. J Neurosurg Pediatr, 16(6), 687-702. doi:10.3171/2015.4.PEDS1493

Devlin, J. T., & Poldrack, R. A. (2007). In praise of tedious anatomy. Neuroimage, 37(4), 1033-1041. Dietrich, R. B., Bradley, W. G., Zaragoza, E. J. t., Otto, R. J., Taira, R. K., Wilson, G. H., & Kangarloo, H. (1988). MR evaluation of early myelination patterns in normal and developmentally delayed infants. AJR Am J Roentgenol, 150(4), 889-896. doi:10.2214/ajr.150.4.889

Dubois, J., Dehaene-Lambertz, G., Kulikova, S., Poupon, C., Hüppi, P. S., & Hertz-Pannier, L. (2014). The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience, 276, 48-71.

Dunnett, C. W. (1955). A multiple comparison procedure for comparing several treatments with a control. Journal of the American Statistical Association, 50(272), 1096-1121.

Emberson, L. L., Cannon, G., Palmeri, H., Richards, J. E., & Aslin, R. N. (2017). Using fNIRS to examine occipital and temporal responses to stimulus repetition in young infants: Evidence of selective frontal cortex involvement. Developmental Cognitive Neuroscience, 23, 26-38. doi:10.1016/j.dcn.2016.11.002

Fang, Q. Q., & Boas, D. A. (2009). Tetrahedral Mesh Generation from Volumetric Binary and Gray-Scale Images. 2009 Ieee International Symposium on Biomedical Imaging: From Nano to Macro, Vols 1 and 2, 1142-1145. doi:Doi 10.1109/Isbi.2009.5193259

Faro, S. H., & Mohamed, F. B. (2006). Functional MRI: basic principles and clinical applications: Springer Science & Business Media.

Ferradal, S. L., Eggebrecht, A. T., Hassanpour, M., Snyder, A. Z., & Culver, J. P. (2014). Atlas-based head modeling and spatial normalization for high-density diffuse optical tomography: In vivo validation against fMRI. Neuroimage, 85, 117-126. doi:10.1016/j.neuroimage.2013.03.069

Ferradal, S. L., Liao, S., Eggebrecht, A. T., Shimony, J. S., Inder, T. E., Culver, J. P., & Smyser, C. D. (2016). Functional Imaging of the Developing Brain at the Bedside Using Diffuse Optical Tomography. Cerebral Cortex, 26(4), 1558-1568. doi:10.1093/cercor/bhu320

Firbank, M. (1994). The design, calibration and usage of a solid scattering and absorbing phantom for near infra red spectroscopy. University of London, Firbank, M., Arridge, S. R., Schweiger, M., & Delpy, D. T. (1996). An investigation of light transport through scattering bodies with non-scattering regions. Physics in Medicine and Biology, 41(4), 767-783. doi:Doi 10.1088/0031-9155/41/4/012

Firbank, M., Okada, E., & Delpy, D. T. (1998). A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses. Neuroimage, 8(1), 69-78. doi:10.1006/nimg.1998.0348

Fleming, S. M., Weil, R. S., Nagy, Z., Dolan, R. J., & Rees, G. (2010). Relating introspective accuracy to individual differences in brain structure. Science, 329(5998), 1541-1543. doi:10.1126/science.1191883

Flock, S. T., Patterson, M. S., Wilson, B. C., & Wyman, D. R. (1989). Monte Carlo modeling of light propagation in highly scattering tissue--I: Model predictions and comparison with diffusion theory. IEEE Trans Biomed Eng, 36(12), 1162-1168. doi:10.1109/tbme.1989.1173624

Fukui, Y., Ajichi, Y., & Okada, E. (2003). Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models. Applied Optics, 42(16), 2881-2887. doi:Doi 10.1364/Ao.42.002881

Gallo, S., Vanstone, C. A., & Weiler, H. A. (2012). Normative data for bone mass in healthy term infants from birth to 1 year of age. J Osteoporos, 2012, 672403. doi:10.1155/2012/672403

Gao, W., Alcauter, S., Elton, A., Hernandez-Castillo, C. R., Smith, J. K., Ramirez, J., & Lin, W. (2015). Functional network development during the first year: relative sequence and socioeconomic correlations. Cerebral Cortex, 25(9), 2919-2928.

Gao, W., Lin, W., Grewen, K., & Gilmore, J. H. (2017). Functional Connectivity of the Infant Human Brain: Plastic and Modifiable. Neuroscientist, 23(2), 169-184. doi:10.1177/1073858416635986

Gebhart, S. C., Lin, W. C., & Mahadevan-Jansen, A. (2006). In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling. Physics in Medicine and Biology, 51(8), 2011-2027. doi:10.1088/0031-9155/51/8/004

Gilmore, J. H., Shi, F., Woolson, S. L., Knickmeyer, R. C., Short, S. J., Lin, W., . . . Shen, D. (2012). Longitudinal development of cortical and subcortical gray matter from birth to 2 years. Cerebral Cortex, 22(11), 2478-2485. doi:10.1093/cercor/bhr327

Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E., . . . Jenkinson, M. (2016). A multi-modal parcellation of human cerebral cortex. Nature, 536(7615), 171-178.

Hakuno, Y., Hata, M., Naoi, N., Hoshino, E. I., & Minagawa, Y. (2020). Interactive live fNIRS reveals engagement of the temporoparietal junction in response to social contingency in infants. Neuroimage, 218, 116901. doi:10.1016/j.neuroimage.2020.116901

Hale, G. M., & Querry, M. R. (1973). Optical Constants of Water in the 200-nm to 200-microm Wavelength Region. Appl Opt, 12(3), 555-563. doi:10.1364/AO.12.000555

Hasan, K. M., Sankar, A., Halphen, C., Kramer, L. A., Brandt, M. E., Juranek, J., . . . Ewing-Cobbs, L. (2007). Development and organization of the human brain tissue compartments across the lifespan using diffusion tensor imaging. Neuroreport, 18(16), 1735-1739.

Hiraoka, M., Firbank, M., Essenpreis, M., Cope, M., Arridge, S. R., van der Zee, P., & Delpy, D. T. (1993). A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy. Physics in Medicine and Biology, 38(12), 1859-1876. doi:10.1088/0031-9155/38/12/011

Holmes, C. J., Hoge, R., Collins, L., Woods, R., Toga, A. W., & Evans, A. C. (1998). Enhancement of MR images using registration for signal averaging. Journal of Computer Assisted Tomography, 22(2), 324-333.

Homan, R. W., Herman, J., & Purdy, P. (1987). Cerebral Location of International 10-20 System Electrode Placement. Electroencephalography and Clinical Neurophysiology, 66(4), 376-382. doi:Doi 10.1016/0013-4694(87)90206-9

Hu, X.-S., Wagley, N., Rioboo, A. T., DaSilva, A. F., & Kovelman, I. (2020). Photogrammetry-based stereoscopic optode registration method for functional near-infrared spectroscopy. Journal of biomedical optics, 25(9), 095001.

Huang, Y., Parra, L. C., & Haufe, S. (2016). The New York Head—A precise standardized volume conductor model for EEG source localization and tES targeting. Neuroimage, 140, 150-162.

Jacques, S. L. (2013). Optical properties of biological tissues: a review. Physics in Medicine & Biology, 58(11), R37.

Jacques, S. L., & Wang, L. (1995). Monte Carlo modeling of light transport in tissues. In Optical-thermal response of laser-irradiated tissue (pp. 73-100): Springer.

Jaffe-Dax, S., Bermano, A. H., Erel, Y., & Emberson, L. L. (2020). Video-based motion-resilient reconstruction of three-dimensional position for functional near-infrared spectroscopy and electroencephalography head mounted probes. Neurophotonics, 7(3), 035001.

Jasper, H. H. (1958). The ten-twenty electrode system of the International Federation. Electroencephalogr. Clin. Neurophysiol., 10, 370-375.

Jermyn, M., Ghadyani, H., Mastanduno, M. A., Turner, W., Davis, S. C., Dehghani, H., & Pogue, B. W. (2013). Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography. Journal of biomedical optics, 18(8). doi:Artn 086007 10.1117/1.Jbo.18.8.086007

Jiang, J., Chen, C., Dai, B., Shi, G., Ding, G., Liu, L., & Lu, C. (2015). Leader emergence through interpersonal neural synchronization. Proc Natl Acad Sci U S A, 112(14), 4274-4279. doi:10.1073/pnas.1422930112

Jiang, Y., Li, Z., Zhao, Y., Xiao, X., Zhang, W., Sun, P., . . . Zhu, C. (2020). Targeting brain functions from the scalp: Transcranial brain atlas based on large-scale fMRI data synthesis. Neuroimage, 210, 116550.

Jobsis, F. F. (1977). Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, 198(4323), 1264-1267.

Jurcak, V., Tsuzuki, D., & Dan, I. (2007). 10/20, 10/10, and 10/5 systems revisited: Their validity as relative head-surface-based positioning systems. Neuroimage, 34(4), 1600-1611. doi:10.1016/j.neuroimage.2006.09.024

Kabdebon, C., Leroy, F., Simmonet, H., Perrot, M., Dubois, J., & Dehaene-Lambertz, G. (2014). Anatomical correlations of the international 10-20 sensor placement system in infants. Neuroimage, 99, 342-356. doi:10.1016/j.neuroimage.2014.05.046

Kalos, M. H., & Whitlock, P. A. (2009). Monte carlo methods: John Wiley & Sons.

Kanai, R., & Rees, G. (2011). The structural basis of inter-individual differences in human behaviour and cognition. Nature Reviews Neuroscience, 12(4), 231-242. doi:10.1038/nrn3000

Kawaguchi, H., Koyama, T., & Okada, E. (2007). Effect of probe arrangement on reproducibility of images by near-infrared topography evaluated by a virtual head phantom. Applied Optics, 46(10), 1658- 1668. doi:Doi 10.1364/Ao.46.001658

Kehrer, M., & Schoning, M. (2009). A longitudinal study of cerebral blood flow over the first 30 months. Pediatric Research, 66(5), 560-564. doi:10.1203/PDR.0b013e3181ba1a29

Keller, P. J., Hunter Jr, W., & Schmalbrock, P. (1987). Multisection fat-water imaging with chemical shift selective presaturation. Radiology, 164(2), 539-541.

Klem, G. H., Luders, H. O., Jasper, H. H., & Elger, C. (1999). The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl, 52, 3-6.

Knaus, T. A., Bollich, A. M., Corey, D. M., Lemen, L. C., & Foundas, A. L. (2006). Variability in perisylvian brain anatomy in healthy adults. Brain and Language, 97(2), 219-232. doi:10.1016/j.bandl.2005.10.008

Koessler, L., Maillard, L., Benhadid, A., Vignal, J. P., Felblinger, J., Vespignani, H., & Braun, M. (2009). Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system. Neuroimage, 46(1), 64-72. doi:10.1016/j.neuroimage.2009.02.006

Kovelman, I., Shalinsky, M. H., White, K. S., Schmitt, S. N., Berens, M. S., Paymer, N., & Petitto, L. A. (2009). Dual language use in sign-speech bimodal bilinguals: fNIRS brain-imaging evidence. Brain and Language, 109(2-3), 112-123. doi:10.1016/j.bandl.2008.09.008

Koyama, T., Iwasaki, A., Ogoshi, Y., & Okada, E. (2005). Practical and adequate approach to modeling light propagation in an adult head with low-scattering regions by use of diffusion theory. Applied Optics, 44(11), 2094-2103. doi:Doi 10.1364/Ao.44.002094

Kozberg, M., & Hillman, E. (2016). Neurovascular coupling and energy metabolism in the developing brain. Progress in brain research, 225, 213-242.

Kumar, V., Shivakumar, V., Chhabra, H., Bose, A., Venkatasubramanian, G., & Gangadhar, B. N. (2017). Functional near infra-red spectroscopy (fNIRS) in schizophrenia: A review. Asian Journal of Psychiatry, 27, 18-31. doi:10.1016/j.ajp.2017.02.009

Kurihara, K., Kawaguchi, H., Obata, T., Ito, H., & Okada, E. (2015). Magnetic resonance imaging appropriate for construction of subject-specific head models for diffuse optical tomography. Biomedical Optics Express, 6(9), 3197-3209. doi:10.1364/Boe.6.003197

Kurihara, K., Kawaguchi, H., Obata, T., Ito, H., Sakatani, K., & Okada, E. (2012). The influence of frontal sinus in brain activation measurements by near-infrared spectroscopy analyzed by realistic head models. Biomedical Optics Express, 3(9), 2121-2130. doi:Doi 10.1364/Boe.3.002121

Li, G., Nie, J. X., Wang, L., Shi, F., Lin, W. L., Gilmore, J. H., & Shen, D. G. (2013). Mapping Region- Specific Longitudinal Cortical Surface Expansion from Birth to 2 Years of Age. Cerebral Cortex, 23(11), 2724-2733. doi:10.1093/cercor/bhs265

Li, G., Wang, L., Shi, F., Lyall, A. E., Lin, W. L., Gilmore, J. H., & Shen, D. G. (2014). Mapping Longitudinal Development of Local Cortical Gyrification in Infants from Birth to 2 Years of Age. Journal of Neuroscience, 34(12), 4228-4238. doi:10.1523/Jneurosci.3976-13.2014

Li, G., Wang, L., Yap, P. T., Wang, F., Wu, Z. W., Meng, Y., . . . Shen, D. G. (2019). Computational neuroanatomy of baby brains: A review. Neuroimage, 185, 906-925. doi:10.1016/j.neuroimage.2018.03.042

Li, H., Ruan, J., Xie, Z., Wang, H., & Liu, W. (2007). Investigation of the critical geometric characteristics of living human skulls utilising medical image analysis techniques. International Journal of Vehicle Safety, 2(4), 345-367.

Li, T., Gong, H., & Luo, Q. (2011). Visualization of light propagation in visible Chinese human head for functional near-infrared spectroscopy. Journal of biomedical optics, 16(4), 045001.

Li, Z. G., Park, B. K., Liu, W., Zhang, J., Reed, M. P., Rupp, J. D., . . . Hu, J. (2015). A statistical skull geometry model for children 0-3 years old. Plos One, 10(5), e0127322. doi:10.1371/journal.pone.0127322

Lillie, E. M., Urban, J. E., Lynch, S. K., Weaver, A. A., & Stitzel, J. D. (2016). Evaluation of Skull Cortical Thickness Changes With Age and Sex From Computed Tomography Scans. J Bone Miner Res, 31(2), 299-307. doi:10.1002/jbmr.2613

Lloyd-Fox, S., Begus, K., Halliday, D., Pirazzoli, L., Blasi, A., Papademetriou, M., . . . Moore, S. (2017). Cortical specialisation to social stimuli from the first days to the second year of life: A rural Gambian cohort. Developmental Cognitive Neuroscience, 25, 92-104.

Lloyd-Fox, S., Blasi, A., & Elwell, C. E. (2010). Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy. Neuroscience and Biobehavioral Reviews, 34(3), 269-284. doi:10.1016/j.neubiorev.2009.07.008

Lloyd-Fox, S., Richards, J. E., Blasi, A., Murphy, D. G. M., Elwell, C. E., & Johnson, M. H. (2014). Coregistering functional near-infrared spectroscopy with underlying cortical areas in infants. Neurophotonics, 1(2). doi:ARTN 025006 10.1117/1.NPh.1.2.025006

Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453(7197), 869-878. Luck, S. J. (2014). An introduction to the event-related potential technique: MIT press.

Maki, A., Yamashita, Y., Ito, Y., Watanabe, E., Mayanagi, Y., & Koizumi, H. (1995). Spatial and temporal analysis of human motor activity using noninvasive NIR topography. Medical Physics, 22(12), 1997-2005.

Makropoulos, A., Aljabar, P., Wright, R., Hüning, B., Merchant, N., Arichi, T., . . . Counsell, S. J. (2016). Regional growth and atlasing of the developing human brain. Neuroimage, 125, 456-478.

Mansouri, C., L’Huillier, J.-P., Kashou, N. H., & Humeau, A. (2010). Depth sensitivity analysis of functional near-infrared spectroscopy measurement using three-dimensional Monte Carlo modelling-based magnetic resonance imaging. Lasers in medical science, 25(3), 431-438.

Miguel, H. O., Gonçalves, Ó. F., Cruz, S., & Sampaio, A. (2019). Infant brain response to affective and discriminative touch: A longitudinal study using fNIRS. Social neuroscience, 14(5), 571-582.

Minagawa-Kawai, Y., Mori, K., Naoi, N., & Kojima, S. (2007). Neural attunement processes in infants during the acquisition of a language-specific phonemic contrast. Journal of Neuroscience, 27(2), 315-321. doi:10.1523/Jneurosci.1984-06.2007

Minagawa, Y., Hakuno, Y., Kobayashi, A., Naoi, N., & Kojima, S. (2017). Infant word segmentation recruits the cerebral network of phonological short-term memory. Brain and Language, 170, 39-49. doi:10.1016/j.bandl.2017.03.005

Moriguchi, Y., & Hiraki, K. (2009). Neural origin of cognitive shifting in young children. Proc Natl Acad Sci U S A, 106(14), 6017-6021. doi:10.1073/pnas.0809747106

Nakamura, K., Kurihara, K., Kawaguchi, H., Obata, T., Ito, H., & Okada, E. (2016). Estimation of partial optical path length in the brain in subject-specific head models for near-infrared spectroscopy. Optical Review, 23(2), 316-322. doi:10.1007/s10043-016-0179-9

Noguchi, K., Gel, Y. R., Brunner, E., & Konietschke, F. (2012). nparLD: an R software package for the nonparametric analysis of longitudinal data in factorial experiments. Journal of Statistical Software, 50(12).

Nuwer, M. R. (2018). 10-10 electrode system for EEG recording. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology, 129(5), 1103.

Okada, E., & Delpy, D. T. (2003a). Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer. Applied Optics, 42(16), 2906-2914. doi:Doi 10.1364/Ao.42.002906

Okada, E., & Delpy, D. T. (2003b). Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal. Applied Optics, 42(16), 2915-2922. doi:Doi 10.1364/Ao.42.002915

Okada, E., Firbank, M., Schweiger, M., Arridge, S. R., Cope, M., & Delpy, D. T. (1997). Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head. Appl Opt, 36(1), 21-31. doi:10.1364/ao.36.000021

Okamoto, M., Dan, H., Sakamoto, K., Takeo, K., Shimizu, K., Kohno, S., . . . Dan, I. (2004). Three- dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping. Neuroimage, 21(1), 99-111. doi:10.1016/j.neuroimage.2003.08.026

Okamoto, M., & Dan, I. (2005). Automated cortical projection transcranial functional brain of head-surface locations for mapping. Neuroimage, 26(1), 18-28. doi:10.1016/j.neuroimage.2005.01.018

Oki, Y., Kawaguchi, H., & Okada, E. (2009). Validation of practical diffusion approximation for virtual near infrared spectroscopy using a digital head phantom. Optical Review, 16(2), 153-159.

Olejnik, S., & Algina, J. (2003). Generalized eta and omega squared statistics: measures of effect size for some common research designs. Psychol Methods, 8(4), 434-447. doi:10.1037/1082- 989X.8.4.434

Oostenveld, R., & Praamstra, P. (2001). The five percent electrode system for high-resolution EEG and ERP measurements. Clinical Neurophysiology, 112(4), 713-719. doi:Doi 10.1016/S1388- 2457(00)00527-7

Papadelis, C., Poghosyan, V., Fenwick, P. B., & Ioannides, A. A. (2009). MEG’s ability to localise accurately weak transient neural sources. Clinical Neurophysiology, 120(11), 1958-1970.

Phillips, A. A., Chan, F. H., Zheng, M. M. Z., Krassioukov, A. V., & Ainslie, P. N. (2016). Neurovascular coupling in humans: physiology, methodological advances and clinical implications. Journal of Cerebral Blood Flow & Metabolism, 36(4), 647-664.

Pighin, F., Hecker, J., Lischinski, D., Szeliski, R., & Salesin, D. H. (2006). Synthesizing realistic facial expressions from photographs. Paper presented at the ACM SIGGRAPH 2006 Courses.

Pinti, P., Tachtsidis, I., Hamilton, A., Hirsch, J., Aichelburg, C., Gilbert, S., & Burgess, P. W. (2020). The present and future use of functional near‐infrared spectroscopy (fNIRS) for cognitive neuroscience. Annals of the New York Academy of Sciences, 1464(1), 5.

Quaresima, V., & Ferrari, M. (2019a). Functional near-infrared spectroscopy (fNIRS) for assessing cerebral cortex function during human behavior in natural/social situations: a concise review. Organizational Research Methods, 22(1), 46-68.

Quaresima, V., & Ferrari, M. (2019b). A Mini-Review on Functional Near-Infrared Spectroscopy (fNIRS): Where Do We Stand, and Where Should We Go? Photonics, 6(3). doi:ARTN 87 10.3390/photonics6030087

Reyes, L. D., Wijeakumar, S., Magnotta, V. A., Forbes, S. H., & Spencer, J. P. (2020). The functional brain networks that underlie visual working memory in the first two years of life. Neuroimage, 116971.

Ruan, J., & Prasad, P. (2001). The effects of skull thickness variations on human head dynamic impact responses. Retrieved from

Schmitz, B., Hagen, T., & Reith, W. (2003). Three-dimensional true FISP for high-resolution imaging of the whole brain. European radiology, 13(7), 1577-1582.

Sharma, S. D., Park, E., Purcell, P. L., Gordon, K. A., Papsin, B. C., & Cushing, S. L. (2020). Age-related variability in pediatric scalp thickness: Implications for auditory prostheses. International Journal of Pediatric Otorhinolaryngology, 130, 109853.

Shattuck, D. W., Mirza, M., Adisetiyo, V., Hojatkashani, C., Salamon, G., Narr, K. L., . . . Toga, A. W. (2008). Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage, 39(3), 1064-1080.

Shi, F., Yap, P. T., Wu, G. R., Jia, H. J., Gilmore, J. H., Lin, W. L., & Shen, D. G. (2011). Infant Brain Atlases from Neonates to 1-and 2-Year-Olds. Plos One, 6(4). doi:ARTN e18746 10.1371/journal.pone.0018746

Singh, A. K., Okamoto, M., Dan, H., Jurcak, V., & Dan, I. (2005). Spatial registration of multichannel multi- subject fNIRS data to MNI space without MRI. Neuroimage, 27(4), 842-851. doi:10.1016/j.neuroimage.2005.05.019

Singh, S. P. (2014). Magnetoencephalography: basic principles. Annals of Indian Academy of Neurology, 17(Suppl 1), S107.

Spinelli, L., Zucchelli, L., Contini, D., Caffini, M., Mehler, J., Flo, A., . . . Torricelli, A. (2017). In vivo measure of neonate brain optical properties and hemodynamic parameters by time-domain near- infrared spectroscopy. Neurophotonics, 4(4). doi:ARTN 041414 10.1117/1.NPh.4.4.041414

Strangman, G. E., Li, Z., & Zhang, Q. (2013). Depth sensitivity and source-detector separations for near infrared spectroscopy based on the Colin27 brain template. Plos One, 8(8), e66319. doi:10.1371/journal.pone.0066319

Strangman, G. E., Zhang, Q., & Li, Z. (2014). Scalp and skull influence on near infrared photon propagation in the Colin27 brain template. Neuroimage, 85, 136-149. doi:10.1016/j.neuroimage.2013.04.090

Taga, G., Homae, F., & Watanabe, H. (2007). Effects of source-detector distance of near infrared spectroscopy on the measurement of the cortical hemodynamic response in infants. Neuroimage, 38(3), 452-460. doi:10.1016/j.neuroimage.2007.07.050

Teplan, M. (2002). Fundamentals of EEG measurement. Measurement science review, 2(2), 1-11. Timmler, S., & Simons, M. (2019). Grey matter myelination. Glia, 67(11), 2063-2070.

Torricelli, A., Pifferi, A., Taroni, P., Giambattistelli, E., & Cubeddu, R. (2001). In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy. Physics in Medicine and Biology, 46(8), 2227-2237. doi:Doi 10.1088/0031-9155/46/8/313

Tran, A. P., Yan, S., & Fang, Q. (2020). Improving model-based functional near-infrared spectroscopy analysis using mesh-based anatomical and light-transport models. Neurophotonics, 7(1), 015008.

Tsuyuki. (2016). Anatomical Structure-based Identification of the Functional Areas in the Brain Models and Application to fNIRS Group Analysis. Unpublished master’s thesis.

Tsuzuki, D., & Dan, I. (2014). Spatial registration for functional near-infrared spectroscopy: From channel position on the scalp to cortical location in individual and group analyses. Neuroimage, 85, 92-103. doi:10.1016/j.neuroimage.2013.07.025

Tsuzuki, D., Homae, F., Taga, G., Watanabe, H., Matsui, M., & Dan, I. (2017). Macroanatomical Landmarks Featuring Junctions of Major Sulci and Fissures and Scalp Landmarks Based on the International 10-10 System for Analyzing Lateral Cortical Development of Infants. Frontiers in Neuroscience, 11. doi:ARTN 394 10.3389/fnins.2017.00394

Tsuzuki, D., Jurcak, V., Singh, A. K., Okamoto, M., Watanabe, E., & Dan, I. (2007). Virtual spatial registration of stand-alone MRS data to MNI space. Neuroimage, 34(4), 1506-1518. doi:10.1016/j.neuroimage.2006.10.043

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., . . . Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15(1), 273-289. doi:10.1006/nimg.2001.0978

Uchida-Ota, M., Arimitsu, T., Tsuzuki, D., Dan, I., Ikeda, K., Takahashi, T., & Minagawa, Y. (2019). Maternal speech shapes the cerebral frontotemporal network in neonates: A hemodynamic functional connectivity study. Developmental Cognitive Neuroscience, 39. doi:UNSP 100701 10.1016/j.dcn.2019.100701

Van der Zee, P. (1993). Measurement and modelling of the optical properties of human tissue in the near infrared. UCL (University College London),

Van der Zee, P., Essenpreis, M., & Delpy, D. T. (1993). Optical properties of brain tissue. Paper presented at the Photon Migration and Imaging in Random Media and Tissues.

Vanderwert, R. E., & Nelson, C. A. (2014). The use of near-infrared spectroscopy in the study of typical and atypical development. Neuroimage, 85, 264-271. doi:10.1016/j.neuroimage.2013.10.009

Wang, F., Lian, C. F., Wu, Z. W., Zhang, H., Li, T. F., Meng, Y., . . . Li, G. (2019a). Developmental topography of cortical thickness during infancy. Proceedings of the National Academy of Sciences of the United States of America, 116(32), 15855-15860. doi:10.1073/pnas.1821523116

Wang, L., Ayaz, H., & Izzetoglu, M. (2019b). Investigation of the source‐detector separation in near infrared spectroscopy for healthy and clinical applications. Journal of Biophotonics, 12(11), e201900175.

Wang, S., Hoshi, Y., & Yamada, Y. (2013). Influences of blood flow changes in cerebrospinal fluid and skin layers on optical mapping. Paper presented at the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

Watanabe, H., Homae, F., Nakano, T., Tsuzuki, D., Enkhtur, L., Nemoto, K., . . . Taga, G. (2013). Effect of auditory input on activations in infant diverse cortical regions during audiovisual processing. Human Brain Mapping, 34(3), 543-565. doi:10.1002/hbm.21453

Wen, X. Y., Zhang, H., Li, G., Liu, M. X., Yin, W. Y., Lin, W. L., . . . Shen, D. G. (2019). First-year development of modules and hubs in infant brain functional networks. Neuroimage, 185, 222-235. doi:10.1016/j.neuroimage.2018.10.019

Whiteman, A. C., Santosa, H., Chen, D. F., Perlman, S., & Huppert, T. (2018). Investigation of the sensitivity of functional near-infrared spectroscopy brain imaging to anatomical variations in 5- to 11-year-old children. Neurophotonics, 5(1). doi:ARTN 011009 10.1117/1.NPh.5.1.011009

Xiao, X., Yu, X. T., Zhang, Z., Zhao, Y., Jiang, Y. H., Li, Z., . . . Zhu, C. Z. (2018). Transcranial brain atlas. Science Advances, 4(9). doi:ARTN eaar6904 10.1126/sciadv.aar6904

Young, R. W. (1959). Age changes in the thickness of the scalp in white males. Hum Biol, 31(1), 74-79.

Zhang, Y. Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. Ieee Transactions on Medical Imaging, 20(1), 45-57. doi:Doi 10.1109/42.906424

Zhu, C., & Liu, Q. (2013). Review of Monte Carlo modeling of light transport in tissues. Journal of biomedical optics, 18(5), 050902.

参考文献をもっと見る