リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Molecular mechanism underlying phosphorus transfer in arbuscular mycorrhizal symbiosis (アーバスキュラー菌根共生におけるリン輸送の分子メカニズム)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Molecular mechanism underlying phosphorus transfer in arbuscular mycorrhizal symbiosis (アーバスキュラー菌根共生におけるリン輸送の分子メカニズム)

NGUYEN, THI CUC 信州大学 DOI:10.3389/fpls.2021.725939

2022.11.08

概要

Phosphorus (P) is an essential element for plant growth and development. However, the concentration of available P in soil is low. Thus, plants have evolved several strategies for P acquisition in P-limiting environments. One of these strategies is the formation of symbiotic associations with arbuscular mycorrhizal (AM) fungi belonging to the subphylum Glomeromycotina. AM fungi provide soil P to host plants via hyphae that interconnect the roots and surrounding soil, thereby improving plant P nutrition and growth. Investigating the P delivery process of AM fungi at the molecular level is important to comprehensively understand this symbiotic association. This study investigates the metabolism and distribution of polyphosphate (polyP), a linear polymer of phosphate (Pi), in AM fungi and symbiotic interfaces to elucidate the P transfer mechanism between AM fungi and the host.

 AM fungi accumulate a large amount of polyP in their mycelia, which plays a role in P storage and translocation. The vacuolar transporter chaperone 4 (VTC4) localized in the tonoplast is responsible for polyP synthesis in budding yeast and protozoan parasites. In Chapter II, the biochemical properties of the VTC4 protein of the AM fungus Rhizophagus irregularis were investigated. The R. irregularis VTC4 protein could catalyze polyP synthesis using ATP as a substrate. Notably, the VTC4 protein also catalyzed the reverse reaction (polyP-depolymerizing reaction), in which ATP was generated from polyP in the presence of high ADP concentration. The direction of the reaction was switched at ATP:ADP ratios of 2:1–5:1. These results indicate that AM fungal VTC4 not only synthesizes polyP but also regenerates ATP from polyP, which may be involved in the regulation of polyP and ATP levels in AM fungal cells.

 Arbuscules, highly branched fungal structures, are the main site for P exchange. Arbuscules are surrounded by a host-derived periarbuscular membrane with localized symbiotic Pi transporters and H+-ATPase HA1. The mutation of HA1 impairs P acquisition through the mycorrhizal pathway. In Chapter III, the subcellular localization of polyP in mature arbuscules colonizing the roots of a Lotus japonicus ha1-1 mutant was investigated to understand P transfer at the arbuscular interface. PolyP accumulated in the cell walls of trunk hyphae of the wild-type and ha1-1 mutant, but most fine branches of arbuscules lacked polyP. Double staining of polyP and acid phosphatase (ACP) activity revealed their contrasting distribution patterns in arbuscules, i.e., ACPs were active around fine branches. Notably, polyP was observed in the cell wall of some fine branches formed in the ha1-1 mutant, indicating that P was released from fungal cells to apoplastic regions. These observations indicate that polyP in fungal cell walls and apoplastic ACPs may play an important role in P transfer at the symbiotic interface of arbuscules.

 Based on the findings, the model of P transfer from AM fungi to the host plant was proposed. The polyP accumulated in vacuoles was translocated to arbuscules, depolymerized by VTC4 to short-chain polyP, and released into the cell wall of fine branches. The secreted polyP was hydrolyzed to Pi by ACP located on the apoplastic region between the AM fungus and the host. The liberated Pi was delivered to host cells by symbiotic Pi transporters driven by the H+ gradient generated across the periarbuscular membrane of the HA1 H+-ATPase. The data presented herein indicate that VTC4 and ACP participate in the synthesis and hydrolysis of polyP metabolism during AM symbiosis, which may affect the growth and P nutrition of AM plants. The present work will promote the production of P-efficient crops and reduce the application of P fertilizer in sustainable agriculture by developing molecular diagnostic tools such as polyP, VTC4, and ACP for the evaluation of AM functions.

参考文献

Aksoy M, Pootakham W, Grossman AR. 2014. Critical function of a Chlamydomonas reinhardtii putative polyphosphate polymerase subunit during nutrient deprivation. 26: 4214–4229.

Aono T, Maldonado-Mendoza IE, Dewbre GR, Harrison MJ, Saito M. 2004. Expression of alkaline phosphatase genes in arbuscular mycorrhizas. New Phytologist 162: 525–534.

Arpat AB, Magliano P, Wege S, Rouached H, Stefanovic A, Poirier Y. 2012. Functional expression of PHO1 to the Golgi and trans-Golgi network and its role in export of inorganic phosphate. The Plant Journal 71: 479–491.

Austin S, Mayer A. 2020. Phosphate homeostasis − A vital metabolic equilibrium maintained through the INPHORS signaling pathway. Frontiers in Microbiology 11: 1–21.

Azaizeh H. Marschner H, Romheld V, Wittenmayer L. 1995. Effects of a vesicular-arbuscular mycorrhizal fungus and other soil microorganisms on growth , mineral nutrient acquisition and root exudation of soil-grown maize plants. Mycorrhiza: 321–327.

Azevedo C, Saiardi A. 2017. Eukaryotic phosphate homeostasis: The inositol pyrophosphate perspective. Trends in Biochemical Sciences 42: 219–231.

Balestrini R, Gómez-ariza J, Lanfranco L, Bonfante P, Piante IP, Vegetale B, Torino U, Mattioli V. 2007. Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Molecular Plant-Microbe Interactions 20: 1055–1062.

Benedetto A, Magurno F, Bonfante P, Lanfranco L. 2005. Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae. Mycorrhiza 15: 620– 627.

Boyce KJ, Kretschmer M, Kronstad JW, Al BET. 2006. The vtc4 gene influences polyphosphate storage, morphogenesis, and virulence in the maize pathogen Ustilago maydis. Eukaryotic Cell 5: 1399–1409.

Brundrett MC, Tedersoo L. 2018. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist 220: 1108–1115.

Chiu CH, Paszkowski U. 2019. Mechanisms and impact of symbiotic phosphate acquisition. Cold Spring Harbor Perspectives in Biology 11: a034603 1.

Clark RB, Zeto SK. 2008. Mineral acquisition by arbuscular mycorrhizal plants. Journal of Plant Nutrition 23 : 37–41.

Cohen A, Perzov N, Nelson H, Nelson N. 1999. A novel family of yeast chaperons involved in the distribution of V-ATPase and other membrane proteins. Journal of Biological Chemistry 274: 26885– 26893.

Cooper J, Carliell-marquet C. 2013. A substance flow analysis of phosphorus in the UK food production and consumption system. Resources, Conservation & Recycling 74: 82–100.

Daniel PS, Reid RJ, Ayling SM. 1998. Update on phosphorus uptake phosphorus uptake by plants: From soil to cell. Plant Physiology 116: 447–453.

Darriba D, Posada D, Flouri T, Kozlov AM, Stamatakis A, Morel B. 2020. ModelTest-NG: A new and scalable tool for the selection of DNA and protein evolutionary models. Molecular Biology and Evolution 37: 291–294.

Delaux PM, Radhakrishnan G V., Jayaraman D, Cheema J, Malbreil M, Volkening JD, Sekimoto H, Nishiyama T, Melkonian M, Pokorny L, et al. 2015. Algal ancestor of land plants was preadapted for symbiosis. Proceedings of the National Academy of Sciences of the United States of America 112: 13390–13395.

Denoncourt A, Downey M. 2021. Model systems for studying polyphosphate biology: a focus on microorganisms. Current Genetics 67: 331–346.

Desfougères Y, Gerasimaitė R, Jessen HJ, Mayer A. 2016. Vtc5, a novel subunit of the vacuolar transporter chaperone complex, regulates polyphosphate synthesis and phosphate homeostasis in yeast. Journal of Biological Chemistry 291: 22262–22275.

Dfaz G, Honrubia M. 1996. Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis cytisoides. Plant and Soil 180: 241–249.

Dreyer B, Pérez-Gilabert M, Olmos E, Honrubia M, Morte A. 2008. Ultrastructural localization of acid phosphatase in arbusculate coils of mycorrhizal Phoenix canariensis roots. Physiologia Plantarum 132: 503–513.

Dreyer I, Spitz O, Kanonenberg K, Montag K, Handrich MR, Ahmad S, Schott-verdugo S, Navarro- retamal C, Rubio- E, Molina-montenegro MA, et al. 2018. Nutrient exchange in arbuscular mycorrhizal symbiosis from a thermodynamic point of view. New Phytologist 222: 1043–1053.

Ezawa T, Shin-ya K, Sakamoto K, Yoshida T, Saito M. 1999. Specific inhibitor and substrate specificity of alkaline phosphatase expressed in the symbiotic phase of the arbuscular mycorrhizal fungus, Glomus etunicatum. Mycologia 91: 636–641.

Ezawa T, Cavagnaro TR, Smith SE, Smith FA, Ohtomo R. 2004. Rapid accumulation of polyphosphate in extraradical hyphae of an arbuscular mycorrhizal fungus as revealed by histochemistry and a polyphosphate kinase/luciferase system. New Phytologist 161: 387–392.

Ezawa T, Hayatsu M, Saito M. 2005. A new hypothesis on the strategy for acquisition of phosphorus in arbuscular mycorrhiza: Up-regulation of secreted acid phosphatase gene in the host plant. Molecular Plant-Microbe Interactions 18: 1046–1053.

Ezawa T, Saito K. 2018. How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine-tuning of phosphate metabolism. New Phytologist 220: 1116–1121.

Ezawa T, Smith SE, Smith FA. 2001. Differentiation of polyphosphate metabolism between the extra- and intraradical hyphae of arbuscular mycorrhizal fungi. New Phytologist 149: 555–563.

Ezawa T, Yoshida T. 1994. Acid phosphatase specific to arbuscular mycorrhizal infection in marigold and possible role in symbiosis. Soil Science and Plant Nutrition 40: 655–665.

Fiorilli V, Lanfranco L, Bonfante P. 2013. The expression of GintPT, the phosphate transporter of Rhizophagus irregularis, depends on the symbiotic status and phosphate availability. Planta 237: 1267–1277.

Fontes R, Fernandes D, Peralta F, Fraga H, Malo I, da Silva JCGE. 2008. Pyrophosphate and tripolyphosphate affect firefly luciferase luminescence because they act as substrates and not as allosteric effectors. FEBS journal 275: 1500–1509.

Fukai E, Soyano T, Umehara Y, Nakayama S, Hirakawa H, Tabata S, Sato S, Hayashi M. 2012. Establishment of a Lotus japonicus gene tagging population using the exon-targeting endogenous retrotransposon LORE1. The Plant Journal 69: 720–730.

Funamoto R, Saito K, Oyaizu H, Aono T, Saito M. 2014. pH measurement of tubular vacuoles of an arbuscular mycorrhizal fungus, Gigaspora margarita. Mycorrhiza 25: 55–60.

Funamoto R, Saito K, Oyaizu H, Saito M, Aono T. 2007. Simultaneous in situ detection of alkaline phosphatase activity and polyphosphate in arbuscules within arbuscular mycorrhizal roots. Functional Plant Biology 34: 803–810.

Gerasimaite and Mayer A. 2017. Ppn2, a novel Zn2+-dependent polyphosphatase in the acidocalcisome-like yeast vacuole. Journal of Cell Science 130 : 1625–1636.

Gerasimaitė R, Sharma S, Desfougères Y, Schmidt A, Mayer A. 2014. Coupled synthesis and translocation restrains polyphosphate to acidocalcisome-like vacuoles and prevents its toxicity. Journal of Cell Science 127: 5039–5104.

Gianinazzi-Pearson V, Smith SE, Gianinazzi S, Smith FA. 1991. Enzymatic studies on the metabolism of vesicular arbuscular mycorrhizas V. is H+-ATPase a component of ATP-hydrolyzing enzyme- activities in plant fungus interfaces. New Phytologist 117: 61–74.

Gianinazzi S, Gianinazzi-Perason V, Dexheimer J. 1979. Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhiza. iii. ultrastructural localization of acid and alkaline phosphatase in onion roots infected by Glomus mosseae (Nicol. & Gerd.). New Phytologist 82: 127–132.

Gildon A, Tinder PB. 2016. Interactions of vesicular-arbuscular mycorrhizal infections and heavy metals in plants. II. The effects of infection on uptake of copper. New Phytologist 95: 263–268.

Giovannini D, Touhami J, Charnet P, Sitbon M, Battini JL. 2013. Inorganic phosphate xport by the retrovirus receptor XPR1 in metazoans. Cell Reports 3: 1866–1873.

Glassop D, Smith SE, Smith FW. 2005. Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots. Planta 222: 688–698.

Gomes-vieira AL, Wideman JG, Paes-vieira L, Gomes SL, Richards TA, Meyer-fernandes JR. 2018. Evolutionary conservation of a core fungal phosphate homeostasis pathway coupled to development in Blastocladiella emersonii. Fungal Genetics and Biology 115: 20–32.

Guether M, Balestrini R, Hannah M, He J, Udvardi MK, Bonfante P. 2009. Genome wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytologist 182: 200–212.

Guttenberger M. 2000. Arbuscules of vesicular-arbuscular mycorrhizal fungi inhabit an acidic compartment within plant roots. Planta 211: 299–304.

Harrison MJ, Dewbre GR, Liu JY. 2002. A phosphate transporter from Medicago truncatula involved in the acquisiton of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14: 2413–2429.

Harrison MJ, Harrison MJ. 1999. Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annual review of plant physiology and plant molecular biology 50: 361–389.

Haugland RP. 2005. The Handbook - A Guide to Fluorescent Probes and Labeling Technologies. USA: Invitrogen.

Heijden MGA Van Der, Martin FM, Sanders IR. 2015. Tansley review mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist 205 : 1406–1423.

Hijikata N, Murase M, Tani C, Ohtomo R, Osaki M, Ezawa T. 2010. Polyphosphate has a central role in the rapid and massive accumulation of phosphorus in extraradical mycelium of an arbuscular mycorrhizal fungus. New Phytologist 186: 285–289.

Hodge A, Campbell CD, Fitter AH. 2001. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413 : 297–299.

Hothorn M, Neumann H, Lenherr ED, Wehner M, Rybin V, Hassa PO, Uttenweiler A, Reinhard M, Schmidt A, Seiler J, et al. 2009a. Catalytic core of amembrane-associated eukaryotic polyphosphate polymerase. Science 324: 513–516.

Huang R, Wan B, Hultz M, Diaz JM, Tang Y. 2018. Phosphatase-mediated hydrolysis of linear polyphosphates. Environmental Science & Technology 52: 1183-1190.

Ishige K, Zhang H, Kornberg A. 2002. Polyphosphate kinase (PPK2), a potent, polyphosphate-driven generator of GTP. Procedding of the National Academy of Science 99: 16684–16688.

Ivanov S, , Jotham Austin RHB and MJH. 2019. Extensive membrane systems at the host–arbuscular mycorrhizal fungus interface. Nature Plants 5: 194–203.

Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ. 2007. A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences 104: 1720–1725.

Jeanmaire C, Dexheimer J, Marx C, Gianinazzi S. 1985. Effect of vesicular-arbuscular mycorrhizal infection on the distribution of neutral phosphatase activities in root cortical cells. Journal of Plant Physiology 119: 285–293.

Jolicoeur M, Germette S, Gaudette M, Perrier M, Be G. 1998. Intracellular pH in arbuscular mycorrhizal fungi. Plant Physiology 116: 1279–1288.

Kikuchi Y, Hijikata N, Ohtomo R, Handa Y, Kawaguchi M, Saito K, Masuta C, Ezawa T. 2016. Aquaporin-mediated long-distance polyphosphate translocation directed towards the host in arbuscular mycorrhizal symbiosis: application of virus-induced gene silencing. New Phytologist 211: 1202–1208.

Kikuchi Y, Hijikata N, Yokoyama K, Ohtomo R, Handa Y, Kawaguchi M, Saito K, Ezawa T. 2014. Polyphosphate accumulation is driven by transcriptome alterations that lead to near-synchronous and near-equivalent uptake of inorganic cations in an arbuscular mycorrhizal fungus. New Phytologist 204: 638–649.

Kobae Y, Hata S. 2010. Dynamics of periarbuscular membranes visualized with a fluorescent phosphate transporter in arbuscular mycorrhizal roots of rice. Plant and Cell Physiology 51: 341–353.

Kobae Y, Kawachi M, Saito K, Kikuchi Y. 2015. Up-regulation of genes involved in N - acetylglucosamine uptake and metabolism suggests a recycling mode of chitin in intraradical mycelium of arbuscular mycorrhizal fungi. Mycorrhiza 25: 411–417.

Kobae Y, Tomioka R, Tanoi K, Kobayashi NI, Ohmori Y. 2014. Selective induction of putative iron transporters , OPT8a and OPT8b , in maize by mycorrhizal colonization Selective induction of putative iron transporters , OPT8a and OPT8b , in maize by mycorrhizal colonization. Soli Science and Plant Nutrition 60: 37–41.

Kohl K, Zangger H, Rossi M, Isorce N, Lye L, Owens KL, Stephen M, Mayer A, Fasel N. 2018. Importance of polyphosphate in the Leishmania life cycle. Microbial Cell 5: 371–384.

Kojima T, Hayatsu M, Saito M. 1998. Intraradical hyphae phosphatase of the arbuscular mycorrhizal fungus, Gigaspora margarita. Biology and Fertility of Soils 26: 331–335.

Kojima T, Oka N, Karasawa T, Okazaki K, Ando S, Takebe M. 2014. Community of arbuscular mycorrhizal fungi in soybean roots after cultivation with different cropping systems. Japan Agricultural Research Quarterly 48: 279–290.

Kozlov AM, Darriba D, Stamatakis A. 2019. RAxML-NG : a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35: 1–3.

Krajinski F, Courty P-E, Sieh D, Franken P, Zhang H, Bucher M, Gerlach N, Kryvoruchko I, Zoeller D, Udvardi M, et al. 2014. The H+-ATPase HA1 of Medicago truncatula is essential for phosphate transport and plant growth during arbuscular mycorrhizal symbiosis. The Plant Cell 26: 1808–1817.

Kuga Y, Saito K, Nayuki K, Peterson RL, Saito M. 2008. Ultrastructure of rapidly frozen and freeze- substituted germ tubes of an arbuscular mycorrhizal fungus and localization of polyphosphate. New Phytologist 178: 189–200.

Kumble KD, Kornberg A. 1996. Endopolyphosphatases for long chain inorganic polyphosphate in yeast and mammals. Journal of Biological Chemistry 271: 27146–27151.

Lander N, Ulrich PN, Docampo R. 2013. Trypanosoma brucei vacuolar transporter chaperone 4 (TbVtc4) is an acidocalcisome polyphosphate kinase required for in vivo infection. Journal of Biological Chemistry 288: 34205–34216.

Letunic I, Bork P. 2019. Interactive Tree Of Life ( iTOL ) v4 : recent updates and new developments. Nucleic Acid Research 47: 256–259.

Li B, Boiarkina I, Young B, Yu W, Singhal N. 2016. Prediction of future phosphate rock: A demand based model. Journal of Environmental Informatics 31: 41–53.

Li XL, Marschner H, Gearge E. 1991. Acquisition of phosphorus and copper by VA-mycorrhizal hyphae and root-to-shoot transport in white clover. Plant and soil 136: 49–57.

Li C, Gui S, Yang T, Walk T, Wang X, Liao H. 2012. Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis. Annals of Botany 109: 275–285.

Li C, Zhou J, Wang X, Liao H. 2019. A purple acid phosphatase, GmPAP33, participates in arbuscule degeneration during arbuscular mycorrhizal symbiosis in soybean. Plant Cell and Environment 42: 2015–2027.

Liu J, Chen J, Xie K, Tian Y, Yan A, Liu J, Huang Y, Wang S, Zhu Y, Chen A, et al. 2020. A mycorrhiza-specific H+-ATPase is essential for arbuscule development and symbiotic phosphate and nitrogen uptake. Plant, Cell & Environment 43: 1069–1083.

Lonetti A, Szijgyarto Z, Bosch D, Loss O, Azevedo C, Saiardi A. 2011. Identification of an evolutionarily conserved family of inorganic polyphosphate endopolyphosphatases. Journal of Biological Chemistry 286: 31966–31974.

Maeda D, Ashida K, Iguchi K, Chechetka SA, Hijikata A, Okusako Y, Deguchi Y, Izui K, Hata S. 2006. Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene of Lotus japonicus suppresses mutualistic symbiosis. Plant and Cell Physiology 47: 807–817.

Maldonado-Mendoza IE, Dewbre GR, Harrison MJ. 2001. A Phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in Response to Phosphate in the Environment. Molecular Plant-Microbe Interactions 14: 1140–1148.

Maria J. Harrison & L.van Buuren. 1995. A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378: 703–706.

Martin FM,Uroz S, Baker DG. 2017. Ancestral alliances: Plant mutualistic symbioses with fungi and bacteria. Science 356: 819.

Martin Willmann , Nina Gerlach BB, Polatajko A, , Réka Nagy , Eva Koebke , Jan Jansa , René Flisch4 and Marcel Bucher. 2013. Mycorrhizal phosphate uptake pathway in maize: vital for growth and cob development on nutrient poor agricultural and greenhouse soils. International Journal of Special Education 30: 137–149.

Marx C, Dexheimer J, Gianinazzi-Pearson V, Gianinazzi S. 1982. Enzymatic studies on the metabolism of vesicular–arbuscular mycorrhizas: IV. Ultracytoenzymological evidence (ATPase) for active transfer processes in the host-arbuscule interface. New Phytologist 90: 37–43.

Miller RM, Jastrow JD. 2000. Mycorrhizal fungi influence soil structure. In: Arbuscular Mycorrhizas: Physiology and Function. Springer p.3–18.

Muller O, Bayer MJ, Peters C, Andersen JS, Mann M, Mayer A. 2002. The Vtc proteins in vacuole fusion : coupling NSF activity to V0 trans -complex formation. EMBO Journal 21: 259–269.

Müller O, Neumann H, Bayer MJ, Mayer A. 2003. Role of the Vtc proteins in V-ATPase stability and membrane trafficking. Journal of Cell Science 116 : 1107–1115.

Murray JM, Johnson DI. 2000. Isolation and cheracterization of Nrf1p, a novel negative regulator of the Cdc42p GTPase in Schizosaccharomyces pombe. Genetics 154: 155–156.

Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht M, Xu G, Jakobsen I, Levy AA, Amrhein N, Bucher M. 2005. The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant Journal 42: 236–250.

Nakakoshi M, Nishioka H, Katayama E. 2011. New versatile staining reagents for biological transmission electron microscopy that substitute for uranyl acetate. Journal of Electron Microscopy 60: 401–407.

Nayuki K, Chen B, Ohtomo R, Kuga Y. 2014. Cellular imaging of cadmium in resin sections of arbuscular mycorrhizas using synchrotron micro X-ray fluorescence. Microbes and Environments 29: 60–66.

Newsham KK, Fitter AH, Watkinson AR. 1995. Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends in Ecology & Evolution 10: 407–411.

Nielsen JS, Joner EJ, Declerck S, Olsson S, Jakobsen I. 2002. Phospho-imaging as a tool for visualization and noninvasive measurement of P transport dynamics in arbuscular mycorrhizas. New Phytologist 154: 809–819.

Ogawa N, Derisi J, Brown PO. 2000. New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis. Molecular Biology of the Cell 11: 4309–4321.

Ohtomo R, Saito M. 2005. Polyphosphate dynamics in mycorrhizal roots during colonization of an arbuscular mycorrhizal fungus. New Phytologist 167: 571–578.

Ohtomo R, Sekiguchi Y, Kojima T, Saito M. 2008. Different chain length specificity among three polyphosphate quantification methods. Analytical Biochemistry 383: 210–216.

Ozalp VC, Pedersen TR, Nielsen LJ, Olsen LF. 2010. Time-resolved measurements of intracellular ATP in the yeast Saccharomyces cerevisiae using a new type of nanobiosensor. Journal of BIological Chemistry 285: 37579–37588.

Pao SS, Paulsen IANT, Saier MH. 1998. Major facilitator superfamily. Microbiology and Molecular Biology Review 62: 1–34.

Pumplin N, Zhang X, Noar RD, Harrison MJ. 2012. Polar localization of a symbiosis-specific phosphate transporter is mediated by a transient reorientation of secretion. Proceedings of the National Academy of Sciences 109: E665–E672.

Rao NN, G R. 2009. Inorganic polyphosphate: Essential for growth and survival. Annual Review of Biochemistry 78: 605–647.

Rasmussen N, Lloyd DC, Ratcliffe RG, Hansen PE, Jakobsen I. 2000. 31P NMR for the study of P metabolism and translocation in arbuscular mycorrhizal fungi. Plant and Soil 226: 245–253.

Richardson AE, Lynch JP, Ryan PR, Delhaize E, Smith FA, Smith SE, Harvey PR, Ryan MH, Veneklaas EJ, Lambers H, et al. 2011. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant and Soil 349: 121–156.

Ritz C, Baty F, Streibig JC, Gerhard D. 2015. Dose-Response Analysis Using R. PLOS ONE 10: 1–13.

Robinson NA, Wood HG. 1986. Polyphosphate kinase from Propionibacterium shermanii. Journal of Biological Chemistry 261: 4481–4485.

Rooney PJ, Ayong L, Tobin CM, Moreno SNJ, Knoll LJ. 2011. TgVTC2 is involved in polyphosphate accumulation in Toxoplasma gondii. Molecular & Biochemical Parasitology 176: 121–126.

Rooney DC, Killham K, Bending GD, Baggs E, Weih M, Hodge A. 2009. Mycorrhizas and biomass crops : opportunities for future sustainable development. Trends in Plant Science 14: 542–549

Roth R, Hillmer S, Funaya C, Chiapello M, Schumacher K, Presti L Lo, Kahmann R, Paszkowski U. 2019. Arbuscular cell invasion coincides with extracellular vesicles and membrane tubules. Nature Plants 5: 204–211.

Safrany ST, Caffrey JJ, Yang X, Bembenek ME, Moyer MB, Burkhart WA, Shears SB. 1998. A novel context for the ‘MutT’ module, a guardian of cell integrity, in a diphosphoinositol polyphosphate phosphohydrolase. EMBO Journal 17: 6599–6607.

Saito K, Ezawa T. 2016. Phosphorus metabolism and transport in arbuscular mycorrhizal symbiosis. Molecular Mycorrhizal Symbiosis: John Wiley & Sons, New Jersey. p.197–216.

Saito K, Ohtomo R, Kuga-Uetake Y, Aono T, Saito M. 2005. Direct labeling of polyphosphate at the ultrastructural level in Saccharomyces cerevisiae by using the affinity of the polyphosphate binding domain of Escherichia coli exopolyphosphatase. Applied and Environmental Microbiology 71: 5692– 5701.

Sanz-Luque E, Saroussi S, Huang W, Akkawi N .2020. Metabolic control of acclimation to nutrient deprivation dependent on polyphosphate synthesis. Science Advances 6 : eabb5351

Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocol 3: 1101–1108.

Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ : 25 years of image analysis. Nature Methods 9: 671–675.

Schott S, Valdebenito B, Bustos D, Gomez-Porras JL, Sharma T, Dreyer I. 2016. Cooperation through competition—dynamics and microeconomics of a minimal nutrient trade system in arbuscular mycorrhizal symbiosis. Frontiers in Plant Science 7: 1–13.

Scott RA, Haight GP. 1975. Separation and Detection of ortho- , pyro- , and tripolyphosphate by anion exchange thin layer chromatography. Analytical Chemicstry 47: 2439–2441.

Secco D, Wang C, Shou H, Whelan J. 2012. Phosphate homeostasis in the yeast Saccharomyces cerevisiae, the key role of the SPX domain-containing proteins. FEBS Letters 586: 289–295.

Shi X, Kornberg A. 2005. Endopolyphosphatase in Saccharomyces cerevisiae undergoes post- translational activations to produce short-chain polyphosphates. FEBS Letters 579: 2014–2018.

Smith SA, Morrissey JH. 2007. Sensitive fluorescence detection of polyphosphate in polyacrylamide gels using 4',6-diamidino-2-phenylindol. Electrophoresis 28 : 3461–3465.

Smith SA, Wang Y, Morrissey JH. 2018. DNA ladders can be used to size polyphosphate resolved by polyacrylamide gel electrophoresis. Electrophoresis 39 : 1–16.

Smith SE and Read DJ. 2008. Mycorrhizal symbiosis. Academic Press, London.

Smith SE, Smith FA. 1990. Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytologist 114: 1–38.

Smith SE, Smith FA. 2011. Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales. Annual Review of Plant Biology 62: 227–250.

Smith SE, Smith SA, Jacobsen I. 2003. Mycorrhizal fungi can dominate phosphate supply to plant irrespective of growth responses. Plant Physiology 133: 1–13.

Smith SE, Smith FA, Jakobsen I. 2004. Functional diversity in arbuscular mycorrhizal (AM) symbioses: The contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytologist 162: 511–524.

Solaiman MZ, Ezawa T, Kojima T, Saito M. 1999. Polyphosphates in intraradical and extraradical hyphae of an arbuscular mycorrhizal fungus, Gigaspora margarita. Applied and Environmental Microbiology 65: 5604–5606.

Solaiman MZ, Saito M. 2001. Phosphate efflux from intraradical hyphae of Gigaspora margarita in vitro and its implication for phosphorus translocation. New Phytologist 151: 525–533.

Strullu-derrien C, Selosse MA, Kenrick P, Martin FM. 2018.The origin and evolution of mycorrhizal symbioses : from palaeomycology to phylogenomics. New Phytologist 220: 1012–1030

Takanishi I, Ohtomo R, Hayatsu M, Saito M. 2009. Short-chain polyphosphate in arbuscular mycorrhizal roots colonized by Glomus spp.: A possible phosphate pool for host plants. Soil Biology and Biochemistry 41: 1571–1573.

Takeda N, Sato S, Asamizu E, Tabata S, Parniske M. 2009. Apoplastic plant subtilases support arbuscular mycorrhiza development in Lotus japonicus. Plant Journal 58: 766–777.

Tani C, Ohtomo R, Osaki M, Kuga Y, Ezawa T. 2009. ATP-dependent but proton gradient- independent polyphosphate-synthesizing activity in extraradical hyphae of an arbuscular mycorrhizal fungus. Applied and Environmental Microbiology 75: 7044–7050.

Thi P, Nguyen M, Ishiwata-kimata Y, Kimata Y. 2019. Monitoring ADP/ATP ratio in yeast cells using the fluorescent-protein reporter percevalHR. Bioscience, Biotechnology, and Biochemistry 83: 824– 828.

Tijssen JPF, Beekes HW, Van Steveninck J. 1982. Saccharomyces fragilis. Yeast 721: 394–398.

Tisserant E, Kohler A, Dozolme-Seddas P, Balestrini R, Benabdellah K, Colard A, Croll D, da Silva C, Gomez SK, Koul R, et al. 2012. The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytologist 193: 755–769.

Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, Charron P, Duensing N, Frei Dit Frey N, Gianinazzi-Pearson V, et al. 2013. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proceedings of the National Academy of Sciences of the United States of America 110: 20117–20122.

Trouvelot, A., Kough, J., Gianinazzi-Pearson V. 1986. Evaluation of VA infection levels in root systems. Researchfor estimation methods having a functional significance. Physiological and Genetical Aspects of Mycorrhizae. INRA Press, Paris, France: 217–221.

Uetake AY, Kojima T, Ezawa T, Saito M. 2002. Extensive tubular vacuole system in an arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytologist 154: 761–768.

Ulrich PN, Lander N, Kurup SP, Reiss L, Brewer J, Soares LC, Miranda K, Docampo R. 2014. The acidocalcisome vacuolar transporter chaperone 4 catalyzes the synthesis of polyphosphate in insect-stages of Trypanosoma brucei and T. cruzi. Journal of Eukaryotic Microbiology 61: 155–165.

Urbański DF, Małolepszy A, Stougaard J, Andersen SU. 2012. Genome-wide LORE1 retrotransposon mutagenesis and high-throughput insertion detection in Lotus japonicus. Plant Journal 69: 731–741.

Uttenweiler A, Schwarz H, Neumann H, Mayer A. 2007. The vacuolar transporter chaperone (VTC) complex Is required for microautophagy. Molecular Biology of the Cell 18: 166–175.

Van Aarle IM, Cavagnaro TR, Smith SE, Smith FA, Dickson S. 2005. Metabolic activity of Glomus intraradices in Arum- and Paris-type arbuscular mycorrhizal colonization. New Phytologist 166: 611– 618.

Viereck N, Hansen PE, Jakobsen I. 2004. Phosphate pool dynamics in the arbuscular mycorrhizal fungus Glomus intraradices studied by in vivo 31P NMR spectroscopy. New Phytologist 162: 783–794.

Walther T, Novo M, Rossger K, Le´tisse F, Loret M-O, Potasis J-C, Fancois J-M. 2010. Control of ATP homeostasis during the respiro-fermentative transition in yeast. Molecular Systems Biology 6:344.

Wang E, Schornack S, Marsh JF, Gobbato E, Schwessinger B, Eastmond P, Schultze M, Kamoun S, Oldroyd GED. 2012. A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Current Biology 22: 2242–2246.

Wang E, Yu N, Bano SA, Liu C, Miller AJ, Cousins D, Zhang X, Ratet P, Tadege M, Mysore KS, et al. 2014. A H+-ATPase That energizes nutrient uptake during mycorrhizal symbioses in rice and Medicago truncatula. The Plant Cell 26: 1818–1830.

Wang L, Jia X, Zhang Y, Xu L, Menand B, Zhao H, Zeng H, Dolan L, Zhu Y, et al. 2021. Loss of two families of SPX domain-containing proteins required for vacuolar polyphosphate accumulation coincides with the transition to phosphate storage in green plants. Molecular Plant 14: 838–846.

Watanabe FS, Olsen SR. 1965. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Science Society Proceedings 29: 677–678.

Watts-Williams SJ, Jakobsen I, Cavagnaro TR, Grønlund M. 2015. Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula. Journal of Experimental Botany 66: 4061–4073.

Werner TP, Amrhein N, Freimoser FM. 2007. Specific localization of inorganic polyphosphate (poly P) in fungal cell walls by selective extraction and immunohistochemistry. Fungal Genetics and Biology 44: 845–852.

Wild R, Gerasimaite R, Jung JY, Truffault V, Pavlovic I, Schmidt A, Saiardi A, Jacob Jessen H, Poirier Y, Hothorn M, et al. 2016. Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science 352: 986–990.

Wurst H, Kornberg A. 1994. A soluble exopolyphosphatase of Saccharomyces cerevisiae. Purification and characterization. Journal of Biological Chemistry 269: 10996–11001.

Wurst H, Shiba T, Kornberg A. 1995. The gene for a major exopolyphosphatase of Saccharomyces- cerevisiae. Journal of Bacteriology 177: 898–906.

Xie X, Huang W, Liu F, Tang N, Liu Y, Lin H, Zhao B. 2013. Functional analysis of the novel mycorrhiza-specific phosphate transporter AsPT1 and PHT1 family from Astragalus sinicus during the arbuscular mycorrhizal symbiosis. New Phytologist 198: 836–852.

Xie X, Lin H, Peng X, Xu C, Sun Z, Jiang K, Huang A, Wu X, Tang N, Salvioli A, et al. 2016a. Arbuscular mycorrhizal symbiosis requires a phosphate transceptor in the Gigaspora margarita fungal symbiont. Molecular Plant 9: 1583–1608.

Xue L, Klinnawee L, Zhou Y, Saridis G, Vijayakumar V, Brands M, Dörmann P, Gigolashvili T, Turck F, Bucher M. 2018. AP2 transcription factor CBX1 with a specific function in symbiotic exchange of nutrients in mycorrhizal Lotus japonicus. Proceedings of the National Academy of Sciences 115: E9239–E9246.

Yang S-Y, Grønlund M, Jakobsen I, Grotemeyer MS, Rentsch D, Miyao A, Hirochika H, Kumar CS, Sundaresan V, Salamin N, et al. 2012a. Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the PHOSPHATE TRANSPORTER1 gene family. The Plant Cell 24: 4236– 4251.

Zhang H, Ishige K, Kornberg A. 2002. A polyphosphate kinase (PPK2) widely conserved in bacteria. Proceedings of the National Academy of Science 99: 16678–16683.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る