リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Multi-mode resistive spectroscopy for precisely controlling morphology of extremely narrow gap palladium nanocluster array」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Multi-mode resistive spectroscopy for precisely controlling morphology of extremely narrow gap palladium nanocluster array

Nakamura, N. 大阪大学

2021.06.01

概要

During the deposition of a metallic material on a substrate, a nanocluster-array structure with an extremely narrow gap is formed transiently at the transition between isolated clusters and the continuous film. It is known that the nanocluster array shows a unique electrical property different from that of isolated clusters and the continuous film. The electrical property of the nanocluster array changes significantly depending on its morphology, and precise control of the deposition time is indispensable to obtain a desired electrical property. However, the detection of the transition is not straightforward. To overcome this problem, we develop the multi-mode resistive spectroscopy. It evaluates the morphological change during deposition using resonant vibrations of a piezoelectric material and enables the fabrication of nanocluster arrays with a slightly different morphology. Palladium nanocluster arrays with different morphologies are fabricated using this method, and the availability of the multi-mode resistive spectroscopy is demonstrated by evaluating their electrical response to hydrogen gas.

参考文献

1 I. M. Rycroft and B. L. Evans, Thin Solid Films 290-291, 283 (1996).

2 S. K. So, H. H. Fong, C. F. Yeung, and N. H. Cheung, Appl. Phys. Lett. 77, 1099 (2000).

3 K. Seal, M. A. Nelson, Z. C. Ying, D. A. Genov, A. K. Sarychev, and V. M. Shalaev, Phys. Rev. B 67, 035318 (2003).

4 T. Xu, M. P. Zach, Z. L. Xiao, D. Rosenmann, U. Welp, W. K. Kwok, and G. W. Crabtree, Appl. Phys. Lett. 86, 203104 (2005).

5 T. Kiefer, L. G. Villanueva, F. Fargier, F. Favier, and J. Brugger, Appl. Phys. Lett. 97, 121911 (2010).

6 N. Nakamura, T. Ueno, and H. Ogi, Appl. Phys. Lett. 114, 201901 (2019).

7 N. Nakamura, T. Ueno, and H. Ogi, J. Appl. Phys. 126, 225104 (2019).

8 E. Byon, T. W. H. Oates, and A. Anders, Appl. Phys. Lett. 82, 1634 (2003).

9 R. Abermann, R. Kramer, and J. Mäser, Thin Solid Films 52, 215 (1978).

10 F. Spaepen, Acta Mater. 48, 31 (2000).

11 E. Chason, B. W. Sheldon, L. B. Freund, J. A. Floro, and S. J. Hearne, Phys. Rev. Lett. 88, 156103 (2002).

12 G. Abadias, L. Simonot, J. J. Colin, A. Michel, S. Camelio, and D. Babonneau, Appl. Phys. Lett. 107, 183105 (2015).

13 J. Colin, A. Jamnig, C. Furgeaud, A. Michel, N. Pliatsikas, K. Sarakinos, and G. Abadias, Nanomaterials 10, 2225 (2020).

14 N. Nakamura and H. Ogi, Appl. Phys. Lett. 111, 101902 (2017).

15 N. Nakamura, N. Yoshimura, H. Ogi, and M. Hirao, J. Appl. Phys. 118, 085302 (2015).

16 F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, Science 293, 2227 (2001).

17 J. van Lith, A. Lassesson, S. A. Brown, M. Schulze, J. G. Partridge, and A. Ayesh, Appl. Phys. Lett. 91, 181910 (2007).

18 O. Dankert and A. Pundt, Appl. Phys. Lett. 81, 1618 (2002).

19 M. Zhao, M. H. Wong, and C. W. Ong, Appl. Phys. Lett. 107, 033108 (2015). 20 L. Zhou, N. Nakamura, A. Nagakubo, and H. Ogi, Appl. Phys. Lett. 115, 171901 (2019).

21 L. Zhou, F. Kato, N. Nakamura, Y. Oshikane, A. Nagakubo, and H. Ogi, Sens. Actuators, B 334, 129651 (2021).

22 H. Ogi, K. Motoshisa, T. Matsumoto, K. Hatanaka, and M. Hirao, Anal. Chem. 78, 6903 (2006).

参考文献をもっと見る