リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Evaluation of thermal conductivity and its structural dependence of a single nanodiamond using molecular dynamics simulation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Evaluation of thermal conductivity and its structural dependence of a single nanodiamond using molecular dynamics simulation

Hiroki Matsubara Gota Kikugawa Takeshi Bessho Taku Ohara 東北大学 DOI:10.1016/j.diamond.2019.107669

2020.02

概要

In the present study, we investigated thermal conductivity and its structural dependence of a spherical nanodiamond with 2.5 nm in diameter using molecular dynamics simulation. We briefly discussed the difficulty of computing the thermal conductivity of a free nanoparticle using conventional methods and here we derived it from the non-equilibrium molecular dynamics simulation of a composite system where a nanodiamond is sandwiched between two solid blocks. The structural dependence was examined by applying this method based on a composite system to the 2.5 nm nanodiamonds having different ratios of 3- and 4-coordinate carbons (termed sp2-like and sp3-like carbons, respectively), which were obtained from annealing at different temperatures. The thermal conductivity of the nanodiamond decreased from 28 to 10 W/(m⋅K) with decreasing ratio of sp3-like carbons until the number of sp2-like bonds exceeded that of sp3-like bonds. When sp2-like bond became richer than sp3-like bond, the thermal conductivity was less sensitive to further increase of the ratio of sp2-like carbons. Based on the consideration of the heat transfer associated with a single C–C bond, we interpreted that this structural dependence reflects the heat transfer characteristics of sp3- or sp2-like bond, whichever is more abundant. This interpretation, as well as the methodology, is helpful for understanding thermal conductivity of nanodiamonds and other carbon nanomaterials.

この論文で使われている画像

参考文献

[1] F. Mashali, E.M. Languri, J. Davidson, D. Kerns, W. Johnson, K. Nawaz, G. Cunningham, Thermo-physical properties of diamond nanofluids: A review, Int. J. Heat Mass Transf. 129 (2019) 1123–1135. doi:10.1016/j.ijheatmasstransfer.2018.10.033.

[2] V.N. Mochalin, Y. Gogotsi, Nanodiamond-polymer composites, Diam. Relat. Mater. 58 (2015) 161–171. doi:10.1016/j.diamond.2015.07.003.

[3] K. Pietrak, T.S. Winiewski, A review of models for effective thermal conductivity of composite materials, J. J. Power Technol. 95 (2015) 14–24. doi:10.1109/TPAMI.1986.4767851.

[4] A. Bródka, Ł. Hawełek, A. Burian, S. Tomita, V. Honkimäki, Molecular dynamics study of structure and graphitization process of nanodiamonds, J. Mol. Struct. 887 (2008) 34–40. doi:10.1016/j.molstruc.2008.01.055.

[5] Y. Zhang, K.Y. Rhee, D. Hui, S.J. Park, A critical review of nanodiamond based nanocomposites: Synthesis, properties and applications, Compos. Part B Eng. 143 (2018) 19–27. doi:10.1016/j.compositesb.2018.01.028.

[6] Y. V. Butenko, V.L. Kuznetsov, A.L. Chuvilin, V.N. Kolomiichuk, S. V. Stankus, R.A. Khairulin, B. Segall, Kinetics of the graphitization of dispersed diamonds at “low” temperatures, J. Appl. Phys. 88 (2000) 4380. doi:10.1063/1.1289791.

[7] S. Tomita, M. Fujii, S. Hayashi, Optical extinction properties of carbon onions prepared from diamond nanoparticles, Phys. Rev. B. 66 (2002) 245424. doi:10.1103/PhysRevB.66.245424.

[8] K. Bogdanov, A. Fedorov, V. Osipov, T. Enoki, K. Takai, T. Hayashi, V. Ermakov, S. Moshkalev, A. Baranov, Annealing-induced structural changes of carbon onions: High-resolution transmission electron microscopy and Raman studies, Carbon N. Y. 73 (2014) 78–86. doi:10.1016/j.carbon.2014.02.041.

[9] J. Xiao, G. Ouyang, P. Liu, C.X. Wang, G.W. Yang, Reversible nanodiamond-carbon onion phase transformations, Nano Lett. 14 (2014) 3645–3652. doi:10.1021/nl5014234.

[10] A. Bródka, T.W. Zerda, A. Burian, Graphitization of small diamond cluster -- Molecular dynamics simulation, Diam. Relat. Mater. 15 (2006) 1818–1821. doi:http://dx.doi.org/10.1016/j.diamond.2006.06.002.

[11] L. Hawelek, A. Brodka, S. Tomita, J.C. Dore, V. Honkimäki, A. Burian, Transformation of nano- diamonds to carbon nano-onions studied by X-ray diffraction and molecular dynamics, Diam. Relat. Mater. 20 (2011) 1333–1339. doi:10.1016/j.diamond.2011.09.008.

[12] P. Ganesh, P.R.C. Kent, V. Mochalin, Formation, characterization, and dynamics of onion-like carbon structures for electrical energy storage from nanodiamonds using reactive force fields, J. Appl. Phys. 110 (2011) 73506. doi:10.1063/1.3641984.

[13] G. Ostroumova, N. Orekhov, V. Stegailov, Reactive molecular-dynamics study of onion-like carbon nanoparticle formation, Diam. Relat. Mater. 94 (2019) 14–20. doi:10.1016/j.diamond.2019.01.019.

[14] V.B. Efimov, L.P. Mezhov-Deglin, Phonon scattering in diamond films, Phys. B Condens. Matter. 263–264 (1999) 745–748. doi:10.1016/S0921-4526(98)01280-0.

[15] P.K. Schelling, S.R. Phillpot, P. Keblinski, Comparison of atomic-level simulation methods for computing thermal conductivity, Phys. Rev. B. 65 (2002) 144306. doi:10.1103/PhysRevB.65.144306.

[16] E.A. Algaer, F. Müller-Plathe, Molecular dynamics calculations of the thermal conductivity of molecular liquids, polymers, and carbon nanotubes, Soft Mater. 10 (2012) 42–80. doi:10.1080/1539445X.2011.599699.

[17] S.S. Mahajan, G. Subbarayan, B.G. Sammakia, Estimating thermal conductivity of amorphous silica nanoparticles and nanowires using molecular dynamics simulations, Phys. Rev. E. 76 (2007) 056701. doi:10.1103/PhysRevE.76.056701.

[18] K. Termentzidis, V.M. Giordano, M. Katsikini, E. Paloura, G. Pernot, M. Verdier, D. Lacroix, I. Karakostas, J. Kioseoglou, Enhanced thermal conductivity in percolating nanocomposites: A molecular dynamics investigation, Nanoscale. 10 (2018) 21732–21741. doi:10.1039/c8nr05734f.

[19] Q. Zou, M.Z. Wang, Y.G. Li, Analysis of the nanodiamond particle fabricated by detonation, J. Exp. Nanosci. 5 (2010) 319–328. doi:10.1080/17458080903531021.

[20] A.N. Panova, V.Y. Dolmatov, E. V. Ishchenko, G.G. Tsapyuk, A.A. Bochechka, M. V. Veretennikova, V. Myllymaki, E. V. Nikitin, The influence of synthesis conditions on the surface state of detonation nanodiamonds, J. Superhard Mater. 37 (2015) 202–210. doi:10.3103/S1063457615030089.

[21] S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys. 117 (1995) 1–19. doi:10.1006/jcph.1995.1039.

[22] S.J. Stuart, A.B. Tutein, J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys. 112 (2000) 6472–6486. doi:10.1063/1.481208.

[23] J. Tersoff, Empirical Interatomic Potential for Carbon, with Applications to Amorphous Carbon, Phys. Rev. Lett. 61 (1988) 2879–2882. doi:10.1103/PhysRevLett.61.2879.

[24] D.W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Phys. Rev. B. 42 (1990) 9458–9471. doi:10.1103/PhysRevB.42.9458.

[25] M.E. Tuckerman, J. Alejandre, R. López-Rendón, A.L. Jochim, G.J. Martyna, A Liouville- operator derived measure-preserving integrator for molecular dynamics simulations in the isothermal-isobaric ensemble, J. Phys. A. Math. Gen. 39 (2006) 5629–5651. doi:10.1088/0305- 4470/39/19/S18.

[26] Z. Fan, L.F.C. Pereira, H.-Q. Wang, J.-C. Zheng, D. Donadio, A. Harju, Force and heat current formulas for many-body potentials in molecular dynamics simulations with applications to thermal conductivity calculations, Phys. Rev. B. 92 (2015) 94301. doi:10.1103/PhysRevB.92.094301.

[27] D. Surblys, H. Matsubara, G. Kikugawa, T. Ohara, Application of atomic stress to compute heat flux via molecular dynamics for systems with many-body interactions, Phys. Rev. E. 99 (2019) 51301. doi:10.1103/PhysRevE.99.051301.

[28] P. Boone, H. Babaei, C.E. Wilmer, Heat Flux for Many-Body Interactions: Corrections to LAMMPS, J. Chem. Theory Comput. 15 (2019) 5579–5587. doi:10.1021/acs.jctc.9b00252.

[29] M.I. Baskes, Modified embedded-atom potentials for cubic materials and impurities, Phys. Rev. B. 46 (1992) 2727–2742. doi:10.1103/PhysRevB.46.2727.

[30] A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc. 114 (1992) 10024–10035. doi:10.1021/ja00051a040.

[31] D. Wolf, J.F. Lutsko, Structurally-induced elastic anomalies in a superlattice of (001) twist grain boundaries, J. Mater. Res. 4 (1989) 1427–1443. doi:10.1557/JMR.1989.1427.

[32] Y. Guo, W. Guo, Structural transformation of partially confined copper nanowires inside defected carbon nanotubes, Nanotechnology. 17 (2006) 4726–4730. http://stacks.iop.org/0957- 4484/17/i=18/a=033.

[33] P. Wirnsberger, D. Frenkel, C. Dellago, An enhanced version of the heat exchange algorithm with excellent energy conservation properties, J. Chem. Phys. 143 (2015) 124104. doi:http://dx.doi.org/10.1063/1.4931597.

[34] L. Wei, P.K. Kuo, R.L. Thomas, T.R. Anthony, W.F. Banholzer, Thermal conductivity of isotopically modified single crystal diamond, Phys. Rev. Lett. 70 (1993) 3764–3767. doi:10.1103/PhysRevLett.70.3764.

[35] J. Che, T. Çağın, W. Deng, W.A.G. III, Thermal conductivity of diamond and related materials from molecular dynamics simulations, J. Chem. Phys. 113 (2000) 6888–6900. doi:10.1063/1.1310223.

[36] J.E. Turney, A.J.H. McGaughey, C.H. Amon, Assessing the applicability of quantum corrections to classical thermal conductivity predictions, Phys. Rev. B. 79 (2009) 224305. doi:10.1103/PhysRevB.79.224305.

[37] W. Li, C. Zou, Experimental investigation of stability and thermo-physical properties of functionalized β-CD-TiO2-Ag nanofluids for antifreeze, Powder Technol. 340 (2018) 290–298. doi:https://doi.org/10.1016/j.powtec.2018.09.005.

[38] J. Cebik, J.K. McDonough, F. Peerally, R. Medrano, I. Neitzel, Y. Gogotsi, S. Osswald, Raman spectroscopy study of the nanodiamond-to-carbon onion transformation, Nanotechnology. 24 (2013) 205703. doi:10.1088/0957-4484/24/20/205703.

[39] M. Chaigneau, G. Picardi, H.A. Girard, J.C. Arnault, R. Ossikovski, Laser heating versus phonon confinement effect in the Raman spectra of diamond nanoparticles, J. Nanoparticle Res. 14 (2012). doi:10.1007/s11051-012-0955-9.

[40] K.W. Sun, J.Y. Wang, T.Y. Ko, Raman spectroscopy of single nanodiamond: Phonon- confinement effects, Appl. Phys. Lett. 92 (2008) 18–21. doi:10.1063/1.2912029.

[41] H.-K. Lyeo, D.G. Cahill, Thermal conductance of interfaces between highly dissimilar materials, Phys. Rev. B. 73 (2006) 144301. doi:10.1103/PhysRevB.73.144301.

[42] S. V. Kidalov, F.M. Shakhov, A.Y. Vul’, Thermal conductivity of nanocomposites based on diamonds and nanodiamonds, Diam. Relat. Mater. 16 (2007) 2063–2066. doi:10.1016/j.diamond.2007.07.010.

[43] A. Vlasov, V. Ralchenko, S. Gordeev, D. Zakharov, I. Vlasov, A. Karabutov, P. Belobrov, Thermal properties of diamond/carbon composites, Diam. Relat. Mater. 9 (2000) 1104–1109. doi:10.1016/S0925-9635(99)00256-3.

[44] H. Matsubara, G. Kikugawa, T. Bessho, S. Yamashita, T. Ohara, Effects of molecular structure on microscopic heat transport in chain polymer liquids, J. Chem. Phys. 142 (2015) 164509. doi:http://dx.doi.org/10.1063/1.4919313.

[45] O. Yenigun, M. Barisik, Effect of nano-film thickness on thermal resistance at water/silicon interface, Int. J. Heat Mass Transf. 134 (2019) 634–640. doi:10.1016/j.ijheatmasstransfer.2019.01.075.

[46] H. Matsubara, G. Kikugawa, T. Bessho, S. Yamashita, T. Ohara, Molecular dynamics study on the role of hydroxyl groups in heat conduction in liquid alcohols, Int. J. Heat Mass Transf. 108 (2017) 749–759. doi:10.1016/j.ijheatmasstransfer.2016.12.045.

[47] M.P. Allen, D.J. Tildesley, Computer simulation of liquids, Oxford University Press, New York, 1987.

[48] D. Torii, T. Nakano, T. Ohara, Contribution of inter- and intramolecular energy transfers to heat conduction in liquids, J. Chem. Phys. 128 (2008) 44504. doi:http://dx.doi.org/10.1063/1.2821963.

[49] M. Gill-Comeau, L.J. Lewis, Heat conductivity in graphene and related materials: A time-domain modal analysis, Phys. Rev. B - Condens. Matter Mater. Phys. 92 (2015) 1–13. doi:10.1103/PhysRevB.92.195404.

[50] K. Xu, Z. Fan, J. Zhang, N. Wei, T. Ala-Nissila, Thermal transport properties of single-layer black phosphorus from extensive molecular dynamics simulations, Model. Simul. Mater. Sci. Eng. 26 (2018). doi:10.1088/1361-651X/aae180.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る