リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Dynamic perfusion digital radiography for predicting pulmonary function after lung cancer resection.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Dynamic perfusion digital radiography for predicting pulmonary function after lung cancer resection.

HANAOKA Jun 00452243 0000-0002-5272-556X YODEN Makoto HAYASHI Kazuki 0000-0002-2393-1233 SHIRATORI Takuya OKAMOTO Keigo 000-0002-6992-3765 KAKU Ryosuke KAWAGUCHI Yo 0000-0002-7828-4635 OHSHIO Yasuhiko 60731916 SONODA Akinaga 00571051 滋賀医科大学

2021.02.09

概要

Background:
Accurate prediction of postoperative pulmonary function is important for ensuring the safety of patients undergoing radical resection for lung cancer. Dynamic perfusion digital radiography is an excellent and easy imaging method for detecting blood flow in the lung compared with the less-convenient conventional lung perfusion scintigraphy. As such, the present study aimed to confirm whether dynamic perfusion digital radiography can be evaluated in comparison with pulmonary perfusion scintigraphy in predicting early postoperative pulmonary function and complications.
Methods:
Dynamic perfusion digital radiography and spirometry were performed before and 1 and 3 months after radical resection for lung cancer. Correlation coefficients between blood flow ratios calculated using dynamic perfusion digital radiography and pulmonary perfusion scintigraphy were then confirmed in the same cases. In all patients who underwent dynamic perfusion digital radiography, the correlation predicted values calculated from the blood flow ratio, and measured values were examined. Furthermore, ppo%FEV1 or ppo%DLco values, which indicated the risk for perioperative complications, were examined.
Results:
A total of 52 participants who satisfied the inclusion criteria were analyzed. Blood flow ratios measured using pulmonary perfusion scintigraphy and dynamic perfusion digital radiography showed excellent correlation and acceptable predictive accuracy. Correlation coefficients between predicted FEV1 values obtained from dynamic perfusion digital radiography or pulmonary perfusion scintigraphy and actual measured values were similar. All patients who underwent dynamic perfusion digital radiography showed excellent correlation between predicted values and those measured using spirometry. A significant difference in ppo%DLco was observed for respiratory complications but not cardiovascular complications.
Conclusions:
Our study demonstrated that dynamic perfusion digital radiography can be a suitable alternative to pulmonary perfusion scintigraphy given its ability for predicting postoperative values and the risk for postoperative respiratory complications. Furthermore, it seemed to be an excellent modality because of its advantages, such as simplicity, low cost, and ease in obtaining in-depth respiratory functional information.
Trial registration:
Registered at UMIN on October 25, 2017. https://upload.umin.ac.jp/cgi-open-bin/ctr/ctr_his_list.cgi?recptno=R000033957
Registration number: UMIN000029716

この論文で使われている画像

参考文献

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer

statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide

for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

2. Ferguson MK, Watson S, Johnson E, Vigneswaran WT. Predicted

postoperative lung function is associated with all-cause long-term

mortality after major lung resection for cancer. Eur J Cardiothorac Surg.

2014;45:660–4.

3. Sawabata N, Nagayasu T, Kadota Y, Goto T, Horio H, Mori T, et al. Risk

assessment of lung resection for lung cancer according to pulmonary

function: republication of systematic review and proposals by guideline

committee of the Japanese Association for Chest Surgery 2014. Gen Thorac

Cardiovasc Surg. 2015;63:14–21.

4. Olsen GN, Block AJ, Tobias JA. Prediction of post pneumonectomy

pulmonary function using quantitative macroaggregate lung scanning.

Chest. 1974;66:13–6.

5. Bolliger CT, Gückiel C, Engel H, Stohr S, Wyser CP, Schoetzau A, et al.

Prediction of functional reserves after lung resection: comparison between

quantitative computed tomography, scintigraphy, and anatomy. Respiration.

2002;69:482–9.

6. Wernly JA, DeMeester TR, Kirchner PT, Myerowitz PD, Oxford DE, Golomb

HM. Clinical value of quantitative ventilation-perfusion lung scans in the

surgical management of bronchogenic carcinoma. J Thorac Cardiovasc

Surg. 1980;80:535–43.

7. Zeiher BG, Gross TJ, Kern JA, Lanza LA, Peterson MW. Predicting

postoperative pulmonary function in patients undergoing lung resection.

Chest. 1995;108:68–72.

8. Katarzyna KK, Józef K, Łukasz P, Małgorzata B, Paweł C, Jacek K, et al.

Perfusion lung scintigraphy for the prediction of postoperative residual

pulmonary function in patients with lung cancer. Nucl Med Rev. 2015;18:

70–7.

9. Tommaso CM, Orazio S, Eugenio P, Davide M, Giovanni S. Usefulness of

lung perfusion scintigraphy before lung cancer resection in patients with

ventilatory obstruction. Ann Thorac Surg. 2006;82:1828–34.

10. Giordano A, Calcagni ML, Meduri G, Valente S, Galli G. Perfusion lung

scintigraphy for the prediction of postlobectomy residual pulmonary

function. Chest. 1997;111:1542–7.

Page 10 of 10

11. Abdel-Dayem HM, Scott A, Macapinlac H, Larson S. Tracer imaging in lung

cancer. Eur J Nucl Med. 1994;21:57–81.

12. Ohno Y, Koyama H, Nogami M, Takenaka D, Matsumoto S, Yoshimura M,

et al. Postoperative lung function in lung cancer patients: comparative

analysis of predictive capability of MRI, CT, and SPECT. Am J Roentgenol.

2007;189:400–8.

13. Oswald NK, Halle-Smith J, Mehdi R, Nightingale P, Naidu B, Turner AM.

Predicting postoperative lung function following lung cancer resection: a

systematic review and meta-analysis. EClinicalMedicine. 2019;15:7–13.

14. Brunelli A, Kim AW, Berger KI, Addrizzo-Harris DJ. Physiologic evaluation of

the patient with lung cancer being considered for resectional surgery:

diagnosis and management of lung cancer, 3rd ed: American College of

Chest Physicians evidence based clinical practice guidelines. Chest. 2014;

143:e166S–90S. https://doi.org/10.1378/chest.12-2395.

15. Tanaka R, Sanada S, Okazaki N, Kobayashi T, Fujimura M, Yasui M, et al.

Evaluation of pulmonary function using breathing chest radiography with a

dynamic flat panel detector: primary results in pulmonary diseases. Invest

Radiol. 2006;41:735–45.

16. Yamada Y, Ueyama M, Abe T, Araki T, Abe T, Nishino M, et al. Time-resolved

quantitative analysis of the diaphragms during tidal breathing in a standing

position using dynamic chest radiography with a flat panel detector system

(“dynamic x-ray phrenicography”): initial experience in 172 volunteers. Acad

Radiol. 2017;24:393–400.

17. Tanaka R. Dynamic chest radiography: flat-panel detector (FPD) based

functional X-ray imaging. Radiol Phys Technol. 2016;9:139–53.

18. Bryant AS, Rudemiller K, Cerfolio RJ. The 30- versus 90-day operative

mortality after pulmonary resection. Ann Thorac Surg. 2010;89:1717–23.

19. Kim AW, Boffa DJ, Wang Z, Detterbeck FC. An analysis, systematic review,

and meta-analysis of the perioperative mortality after neoadjuvant therapy

and pneumonectomy for non-small cell lung cancer. J Thorac Cardiovasc

Surg. 2012;143:55–63.

20. Ali MK, Mountain CF, Ewer MS, Johnston D, Haynie TP. Predicting loss of

pulmonary function after pulmonary resection for bronchogenic carcinoma.

Chest. 1980;77:337–42.

21. Gass GD, Oslen GN. Preoperative pulmonary function testing to predict

postoperative morbidity and mortality. Chest. 1986;89:127–35.

22. Bland JM, Altman DG. Statistical methods for assessing agreement between

two methods of clinical measurement. Lancet. 1986;1:307–10.

23. Pierce RJ, Copland JM, Sharpe K, Barter CE. Preoperative risk evaluation for

lung cancer resection: predicted postoperative product as a predictor of

surgical mortality. Am J Respir Crit Care Med. 1994;150:947–55.

24. Markos J, Mullan BP, Hillman DR, Musk AW, Antico VF, Lovegrove FT, et al.

Preoperative assessment as a predictor of mortality and morbidity after lung

resection. Am Rev Respir Dis. 1989;139:902–10.

25. Yamasaki Y, Abe K, Hosokawa K, Kamitani T. A novel pulmonary circulation

imaging using dynamic digital radiography for chronic thromboembolic

pulmonary hypertension. Eur Heart J. 2020;41:2506.

26. Tamura M, Matsumoto I, Saito D, Yoshida S, Takata M, Takemura H. Case

report: uniportal video-assisted thoracoscopic resection of a solitary fibrous

tumor preoperatively predicted visceral pleura origin using dynamic chest

radiography. J Cardiothoracic Surg. 2020;15:166.

27. Ohkura N, Kasahara K, Watanabe S, Hara J, Abo M, Sone T, et al. Dynamicventilatory digital radiography in air flow limitation: a change in lung area

reflects air trapping. Respiration. 2020;99:382–8.

28. Watase S, Sonoda A, Matsutani N, Muraoka S, Hanaoka J, Nittaa N, et al.

Evaluation of intrathoracic tracheal narrowing in patients with obstructive

ventilatory impairment using dynamic chest radiography: a preliminary

study. Eur J Radiol. 2020;129:109141.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る