リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Creation of synthetic contrast-enhanced computed tomography images using deep neural networks to screen for renal cell carcinoma」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Creation of synthetic contrast-enhanced computed tomography images using deep neural networks to screen for renal cell carcinoma

Sassa, Naoto Kameya, Yoshitaka Takahashi, Tomoichi Matsukawa, Yoshihisa Majima, Tsuyoshi Tsuruta, Katsuhisa Kobayashi, Ikuo Kajikawa, Keishi Kawanishi, Hideji Kurosu, Haruka Yamagiwa, Sho Takahashi, Masaya Hotta, Kazuhiro Yamada, Keiichi Yamamoto, Tokunori 名古屋大学

2023.11

概要

Recently, the number of accidentally discovered small-diameter renal tumors has increased1
More than 50% of kidney tumors are asymptomatic or discovered while screening for other
illnesses.2,3 It is necessary to perform both plain computed tomography (CT), which does not
use a contrast medium, and contrast-enhanced CT (CECT), which uses a contrast medium, to
diagnose renal cell carcinoma (RCC).4 The methods of CECT were determined by different
clinical indications according to the renal protocol, balancing diagnostic accuracy and radiation
exposure.5 CECT shows the blood flow, blood flow velocity, degree of capillary development,
and stromal status by comparing the Hounsfield units (HU) before and after the injection of the
contrast medium; an enhancement of the contrast effect by ≥15 HU when compared with plain
CT indicates the presence of a kidney tumor.6 Additionally, CECT angiography is useful for
visualizing the location of blood vessels before surgery.7 However, the use of a contrast medium
is contraindicated in patients with contrast medium-related allergies and moderate or greater
renal dysfunction.8 Moreover, RCC also occurs in younger patients, and thus, these patients are
subjected to frequent medical exposure to CT during screening and follow-up following radical
surgery. Imaging methods aimed at reducing medical exposure have been attempted previously.9
Magnetic resonance imaging (MRI) is recommended to reduce the risk of secondary carcinogenesis owing to medical exposure.10-12 MRI is useful for determining the presence or absence of
tumor thrombus in inferior vena cava in patients with RCC. MRI, including diffusion-weighted
imaging, is very useful in diagnosing kidney cancer and also useful in that there is no radiation
exposure. However, plain CT is taken frequently for screening in many clinical situations, including the emergency room and medical practitioner due to the shorter examination time than MRI.
These CT scans may be useful for diagnosing renal tumors. Imaging modalities with reduced
exposure doses and better image detection capabilities for screening small renal tumors have
not yet been developed.13 Additionally, the European Association of Urology (EAU) guidelines
recommend the development of a postoperative CT schedule according to the risk and frequency
of RCC recurrence-based tumor staging to reduce medical exposure.14
The progress in image composition technology has been remarkable. There have been many
reports in the medical field on improving diagnostic imaging assistance using artificial intelligence
(AI). AI is used to distinguish between benign and malignant renal tumors.15-18 Some studies have
sought to determine the grade and type of malignant and nuclear atypia of RCC.19,20 However,
all studies utilizing AI have used previously obtained CECT images and not image composition
technology. Furthermore, while previous studies have also reported CT image generation by
image-to-image translation using deep neural networks (DNNs),21 there have been no reports on
synthetic CECT images created for the purpose of reducing medical exposure and avoiding the
use of a contrast medium. In this study, we first created a DNN based on plain CT images. We
subsequently aimed to evaluate whether a synthetic CECT image created using the DNN could
Nagoya J. Med. Sci. 85. ...

この論文で使われている画像

参考文献

1 Finelli A, Ismaila N, Bro B, et al. Management of small renal masses: American Society of Clinical

Oncology clinical practice guideline. J Clin Oncol. 2017;35(6):668–680. doi:10.1200/JCO.2016.69.9645.

2 Novara G, Ficarra V, Antonelli A, et al. Validation of the 2009 TNM version in a large multi-institutional cohort of patients treated for renal cell carcinoma: Are further improvements needed? Eur Urol.

2010;58(4):588–595. doi:10.1016/j.eururo.2010.07.006.

3 Jayson M, Sanders H. Increased incidence of serendipitously discovered renal cell carcinoma. Urology.

1998;51(2):203–205. doi:10.1016/s0090-4295(97)00506-2.

4 Chu JS, Wang ZJ. Protocol optimization for renal mass detection and characterization. Radiol Clin North

Am. 2020;58(5):851–873. doi:10.1016/j.rcl.2020.05.003.

5 Sasaguri K, Takahashi N. CT and MR imaging for solid renal mass characterization. Eur J Radiol.

2018;99:40–54. doi:10.1016/j.ejrad.2017.12.008.

6 Israel GM, Bosniak MA. Pitfalls in renal mass evaluation and how to avoid them. Radiographics.

2008;28(5):1325–1338. doi:10.1148/rg.285075744.

7 Shao P, Tang L, Li P, et al. Precise segmental renal artery clamping under the guidance of dual-source computed tomography angiography during laparoscopic partial nephrectomy. Eur Urol. 2012;62(6):1001–1008.

doi:10.1016/j.eururo.2012.05.056.

8 Janus CL, Mendelson DS. Comparison of MRI and CT for study of renal and perirenal masses. Crit Rev

Diagn Imaging. 1991;32(2):69–118.

9 Dallmer JR, Robles J, Wile GE, Koyama T, Barocas DA. The harms of hematuria evaluation: Modeling

the risk-benefit of using split bolus computerized tomography urography to reduce radiation exposure in a

theoretical cohort. J Urol. 2019;202(5):899–904. doi:10.1097/JU.0000000000000387.

10 Capogrosso P, Capitanio U, La Croce G, et al. Follow-up after treatment for renal cell carcinoma: The

evidence beyond the guidelines. Eur Urol Focus. 2016;1(3):272–281. doi:10.1016/j.euf.2015.04.001.

11 Neisius A, Wang AJ, Wang C, et al. Radiation exposure in urology: A genitourinary catalogue for diagnostic

imaging. J Urol. 2013;190(6):2117–2123. doi:10.1016/j.juro.2013.06.013.

12 Lipsky MJ, Shapiro EY, Hruby GW, McKiernan JM. Diagnostic radiation exposure during surveillance in

patients with pT1a renal cell carcinoma. Urology. 2013;81(6):1190–1195. doi:10.1016/j.urology.2012.08.056.

13 Dilauro M, Quon M, McInnes MD, et al. Comparison of contrast-enhanced multiphase renal protocol CT

versus MRI for diagnosis of papillary renal cell carcinoma. AJR Am J Roentgenol. 2016;206(2):319–325.

doi:10.2214/AJR.15.14932.

14 Ljungberg B, Albiges L, Abu-Ghanem Y, et al. European Association of Urology guidelines on renal cell

carcinoma: The 2019 update. Eur Urol. 2019;75(5):799–810. doi:10.1016/j.eururo.2019.02.011.

15 Oberai A, Varghese B, Cen S, et al. Deep learning based classification of solid lipid-poor contrast enhancing

renal masses using contrast enhanced CT. Br J Radiol. 2020;93(1111):20200002. doi:10.1259/bjr.20200002.

16 Baghdadi A, Aldhaam NA, Elsayed AS, et al. Automated differentiation of benign renal oncocytoma and

chromophobe renal cell carcinoma on computed tomography using deep learning. BJU Int. 2020;125(4):553–

560. doi:10.1111/bju.14985.

17 Kocak B, Kaya OK, Erdim C, Kus EA, Kilickesmez O. Artificial intelligence in renal mass characterization:

A systematic review of methodologic items related to modeling, performance evaluation, clinical utility, and

transparency. AJR Am J Roentgenol. 2020;215(5):1113–1122. doi:10.2214/AJR.20.22847.

18 Han S, Hwang SI, Lee HJ. The classification of renal cancer in 3-phase CT images using a deep learning

method. J Digit Imaging. 2019;32(4):638–643. doi:10.1007/s10278-019-00230-2.

19 Kocak B, Durmaz ES, Ates E, Kaya OK, Kilickesmez O. Unenhanced CT texture analysis of clear cell

renal cell carcinomas: A machine learning-based study for predicting histopathologic nuclear grade. AJR

Am J Roentgenol. 2019:212(6):W132-W139. doi:10.2214/AJR.18.20742.

20 Shu J, Wen D, Xi Y, et al. Clear cell renal cell carcinoma: Machine learning-based computed tomography

radiomics analysis for the prediction of WHO/ISUP grade. Eur J Radiol. 2019;121:108738. doi:10.1016/j.

ejrad.2019.108738.

21 Kaji S, Kida S. Overview of image-to-image translation by use of deep neural networks: Denoising,

super-resolution, modality conversion, and reconstruction in medical imaging. Radiol Phys Technol.

Nagoya J. Med. Sci. 85. 713–724, 2023

723

doi:10.18999/nagjms.85.4.713

Naoto Sassa et al

2019;12(3):235–248. doi:10.1007/s12194-019-00520-y.

Kutikov A, Uzzo RG. The R.E.N.A.L. nephrometry score: A comprehensive standardized system for quantitating renal tumor size, location and depth. J Urol. 2009;182(3):844–853. doi:10.1016/j.juro.2009.05.035.

23 Mukaka MM. Statistics corner: A guide to appropriate use of correlation coefficient in medical research.

Malawi Med J. 2012;24(3):69–71.

24 Chen H, Jiang Y, Zhang J. 3D Reconstruction for Robot Navigation Based on Projection of Virtual

Height Line and Its Performance Evaluation. 2010 International Conference on Measuring Technology and

Mechatronics Automation. IEEE; 2010. doi:10.1109/ICMTMA.2010.65.

25 Lightfoot N, Conlon M, Kreiger N, et al. Impact of noninvasive imaging on increased incidental detection

of renal cell carcinoma. Eur Urol. 2000;37(5):521–527. doi:10.1159/000020188.

26 Einstein DM, Herts BR, Weaver R, Obuchowski N, Zepp R, Singer A. Evaluation of renal masses

detected by excretory urography: Cost-effectiveness of sonography versus CT. AJR Am J Roentgenol.

1995;164(2):371–375. doi:10.2214/ajr.164.2.7839971.

27 Curry NS. Imaging the small solid renal mass. Abdom Imaging. 2002;27(6):629–636. doi:10.1007/s00261001-0142-4.

28 Jamis-Dow CA, Choyke PL, Jennings SB, Linehan WM, Thakore KN, Walther MM. Small (< or = 3-cm)

renal masses: detection with CT versus US and pathologic correlation. Radiology. 1996;198(3):785–788.

doi:10.1148/radiology.198.3.8628872.

References End

22 Nagoya J. Med. Sci. 85. 713–724, 2023

724

doi:10.18999/nagjms.85.4.713

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る