リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Study on Contribution of Trimethyl Guanosine Synthase Tgs1 to Heterochromatin Formation in Fission Yeast」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Study on Contribution of Trimethyl Guanosine Synthase Tgs1 to Heterochromatin Formation in Fission Yeast

愉, 彦樺 北海道大学

2021.06.30

概要

One of the major goals of the life sciences is to understand how the genetic information written in DNA is maintained and expressed timely.

Only about 10% of the genes in eukaryotic cells are expressed, and most genes are repressed [1]. These phenomena have attracted attention recently as epigenetics, in which gene expression and cell phenotype change after cell division without changing the DNA sequence. Transcriptional repression via chromatin structure is one of the major mechanisms of this gene repression.

In eukaryotic cells, DNA wraps around an octamer histone protein every 146 bp to form a chromatin structure (Fig. 1-1). The N-terminus of the histone protein contains a region called the histone tail, which influences the chromatin structure through modifications such as acetylation, methylation, and phosphorylation[2]–[4]. Chromatin structure can be broadly classified into heterochromatin and euchromatin. Euchromatin, which has a loose chromatin structure, is characterized by the modification that the 9th lysine is acetylated (K9Ac) and the 4th lysine is methylated (K4me), and genes in this region are actively transcribed. Alternatively, heterochromatin is characterized by methylation on the 9th lysine (K9me) and Heterochromatin Protein1 (HP1)/fission yeast homolog Swi6 binding by recognizing this modification, and gene transcription is suppressed. Also it has condensed structure and provides an environment that promotes the assembly of kinetochore during mitosis at centromere, which is essential for the correct segregation of chromosomes (Fig.1-2)[5]–[8].

この論文で使われている画像

参考文献

[1] C. P. Ponting, P. L. Oliver, and W. Reik, “Evolution and Functions of Long Noncoding RNAs,” Cell, vol. 136, no. 4, pp. 629–641, 2009.

[2] A. G. West, S. Huang, M. Gaszner, M. D. Litt, and G. Felsenfeld, “Recruitment of histone modifications by USF proteins at a vertebrate barrier element,” Mol. Cell, vol. 16, no. 3, pp. 453–463, 2004.

[3] M. Iizuka and M. M. Smith, “Functional consequences of histone modifications,” Curr. Opin. Genet. Dev., vol. 13, no. 2, pp. 154–160, 2003.

[4] C. Yan and D. D. Boyd, “Histone H3 Acetylation and H3 K4 Methylation Define Distinct Chromatin Regions Permissive for Transgene Expression,” Mol. Cell. Biol., vol. 26, no. 17, pp. 6357–6371, 2006.

[5] R. C. Allshire, J. P. Javerzat, N. J. Redhead, and G. Cranston, “Position effect variegation at fission yeast centromeres,” Cell, vol. 76, no. 1, pp. 157–169, 1994.

[6] K. L. Huisinga, B. Brower-Toland, and S. C. R. Elgin, “The contradictory definitions of heterochromatin: Transcription and silencing,” Chromosoma, vol. 115, no. 2, pp. 110–122, 2006.

[7] R. C. Allshire and K. Ekwall, “Epigenetic regulation of chromatin states in Schizosaccharomyces pombe,” Cold Spring Harb. Perspect. Biol., vol. 7, no. 7, pp. 1– 25, 2015.

[8] M. Sorida et al., “Regulation of ectopic heterochromatin-mediated epigenetic diversification by the JmjC family protein Epe1,” PLoS Genet., vol. 15, no. 6, pp. 1–29, 2019.

[9] S. Guang, A. F. Bochner, K. B. Burkhart, N. Burton, D. M. Pavelec, and S. Kennedy, “Small regulatory RNAs inhibit RNA polymerase II during the elongation phase of transcription,” Nature, vol. 465, no. 7301, pp. 1097–1101, 2010.

[10] J. Y. Parsa, S. Boudoukha, J. Burke, C. Homer, and H. D. Madhani, “Polymerase pausing induced by sequence-specific RNA-binding protein drives heterochromatin assembly,” Genes Dev., vol. 32, no. 13–14, pp. 953–964, 2018.

[11] Y. Shimada, F. Mohn, and M. Bühler, “The RNA-induced transcriptional silencing complex targets chromatin exclusively via interacting with nascent transcripts,” Genes Dev., vol. 30, no. 23, pp. 2571–2580, 2016.

[12] Y. Chikashige et al., “Composite motifs and repeat symmetry in S. pombe centromeres: Direct analysis by integration of Notl restriction sites,” Cell, vol. 57, no. 5, pp. 739–751, 1989.

[13] S. Murakami, M. Yanagida, and O. Niwa, “A large circular minichromosome of Schizosaccharomyces pombe requires a high dose of type II DNA topoisomerase for its stabilization,” MGG Mol. Gen. Genet., vol. 246, no. 6, pp. 671– 679, 1995.

[14] K. Ekwall, “The roles of histone modifications and small RNA in centromere function,” Chromosom. Res., vol. 12, no. 6, pp. 535–542, 2004.

[15] A. Smialowska, I. Djupedal, J. Wang, P. Kylsten, P. Swoboda, and K. Ekwall, “RNAi mediates post-transcriptional repression of gene expression in fission yeast Schizosaccharomyces pombe,” Biochem. Biophys. Res. Commun., vol. 444, no. 2, pp. 254–259, 2014.

[16] K. R. Hansen, P. T. Ibarra, and G. Thon, “Evolutionary-conserved telomere-linked helicase genes of fission yeast are repressed by silencing factors, RNAi components and the telomere-binding protein Taz1,” Nucleic Acids Res., vol. 34, no. 1, pp. 78–88, 2006.

[17] T. Sugiyama, H. Cam, A. Verdel, D. Moazed, and S. I. S. Grewal, “RNAdependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production,” Proc. Natl. Acad. Sci. U. S. A., vol. 102, no. 1, pp. 152–157, 2005.

[18] H. Kato and Y. Murakami, “Heterochromatin and centromere: heterochromatin meets RNAi,” Tanpakushitsu Kakusan Koso., vol. 49, no. 12, pp. 1990–1997, 2004.

[19] T. Kajitani et al., “Ser7 of RNAPII-CTD facilitates heterochromatin formation by linking ncRNA to RNAi,” Proc. Natl. Acad. Sci., p. 201714579, 2017.

[20] T. Hori et al., “Constitutive centromere-associated network controls centromere drift in vertebrate cells,” J. Cell Biol., vol. 216, no. 1, pp. 101–113, 2017.

[21] K. Plath, S. Mlynarczyk-Evans, D. A. Nusinow, and B. Panning, “Xist RNA and the Mechanism of X Chromosome Inactivation ,” Annu. Rev. Genet., vol. 36, no. 1, pp. 233–278, 2002.

[22] J. M. Autuoro, S. P. Pirnie, and G. G. Carmichael, “Long noncoding RNAs in imprinting and X chromosome inactivation,” Biomolecules, vol. 4, no. 1, pp. 76–100, 2014.

[23] R. C. Allshire and K. Ekwall, “Epigenetic regulation of chromatin states in Schizosaccharomyces pombe,” Cold Spring Harb. Perspect. Biol., vol. 7, no. 7, pp. 1– 25, 2015.

[24] J. A. Fawcett et al., “Population genomics of the fission yeast Schizosaccharomyces pombe,” PLoS One, vol. 9, no. 8, 2014.

[25] J. Wixon, “Featured organism: Schizosaccharomyces pombe, the fission yeast,” Comp. Funct. Genomics, vol. 3, no. 2, pp. 194–204, 2002.

[26] S. Hausmann and S. Shuman, “Specificity and mechanism of RNA cap guanine-N2 methyltransferase (Tgs1),” J. Biol. Chem., vol. 280, no. 6, pp. 4021–4024, 2005.

[27] J. Mouaikel, C. Verheggen, E. Bertrand, J. Tazi, and R. Bordonné, “Hypermethylation of the cap structure of both yeast snRNAs and snoRNAs requires a conserved methyltransferase that is localized to the nucleolus,” Mol. Cell, vol. 9, no. 4, pp. 891–901, 2002.

[28] Y. Zhu, C. Qi, W. Q. Cao, A. V. Yeldandi, M. S. Rao, and J. K. Reddy, “Cloning and characterization of PIMT, a protein with a methyltransferase domain, which interacts with and enhances nuclear receptor coactivator PRIP function,” Proc. Natl. Acad. Sci. U. S. A., vol. 98, no. 18, pp. 10380–10385, 2001.

[29] C. Girard et al., “Characterization of a short isoform of human Tgs1 hypermethylase associating with small nucleolar ribonucleoprotein core proteins and produced by limited proteolytic processing,” J. Biol. Chem., vol. 283, no. 4, pp. 2060– 2069, 2008.

[30] J. peng Ruan, E. Ullu, and C. Tschudi, “Characterization of the Trypanosoma brucei cap hypermethylase Tgs1,” Mol. Biochem. Parasitol., vol. 155, no. 1, pp. 66–69, 2007.

[31] I. Enünlü, G. Pápai, I. Cserpán, A. Udvardy, K. T. Jeang, and I. Boros, “Different isoforms of PRIP-interacting protein with methyltransferase domain/trimethylguanosine synthase localizes to the cytoplasm and nucleus,” Biochem. Biophys. Res. Commun., vol. 309, no. 1, pp. 44–51, 2003.

[32] T. Monecke, A. Dickmanns, and R. Ficner, “Structural basis for m7G-cap hypermethylation of small nuclear, small nucleolar and telomerase RNA by the dimethyltransferase TGS1,” Nucleic Acids Res., vol. 37, no. 12, pp. 3865–3877, 2009.

[33] J. Chang, B. Schwer, and S. Shuman, “Mutational analyses of trimethylguanosine synthase (Tgs1) and Mud2: Proteins implicated in pre-mRNA splicing,” Rna, vol. 16, no. 5, pp. 1018–1031, 2010.

[34] S. Hausmann et al., “Genetic and biochemical analysis of yeast and human cap trimethylguanosine synthase: Functional overlap of 2,2,7-trimethylguanosine caps, small nuclear ribonucleoprotein components, PRE-mRNA splicing factors, and RNA decay pathways,” J. Biol. Chem., vol. 283, no. 46, pp. 31706–31718, 2008.

[35] L. Chen et al., “Loss of Human TGS1 Hypermethylase Promotes Increased Telomerase RNA and Telomere Elongation,” Cell Rep., vol. 30, no. 5, pp. 1358-1372.e5, 2020.

[36] V. S. R. K. Yedavalli and K. T. Jeang, “Rev-ing up post-transcriptional HIV-1 RNA expression,” RNA Biol., vol. 8, no. 2, 2011.

[37] M. Jankowska-Anyszka, K. Piecyk, and J. Šamonina-Kosicka, “Synthesis of a new class of ribose functionalized dinucleotide cap analogues for biophysical studies on interaction of cap-binding proteins with the 5′ end of mRNA,” Org. Biomol. Chem., vol. 9, no. 15, pp. 5564–5572, 2011.

[38] A. Mourão, A. Varrot, C. D. Mackereth, S. Cusack, and M. Sattler, “Structure and RNA recognition by the snRNA and snoRNA transport factor PHAX,” Rna, vol. 16, no. 6, pp. 1205–1216, 2010.

[39] D. Becker, A. G. Hirsch, L. Bender, T. Lingner, G. Salinas, and H. Krebber, “Nuclear Pre-snRNA Export Is an Essential Quality Assurance Mechanism for Functional Spliceosomes,” Cell Rep., vol. 27, no. 11, pp. 3199-3214.e3, 2019.

[40] A. Camasses, E. Bragado-Nilsson, R. Martin, B. Séraphin, and R. Bordonné, “Interactions within the Yeast Sm Core Complex: from Proteins to Amino Acids,” Mol. Cell. Biol., vol. 18, no. 4, pp. 1956–1966, 1998.

[41] M. Morlando, P. Greco, B. Dichtl, A. Fatica, W. Keller, and I. Bozzoni, “Functional Analysis of Yeast snoRNA and snRNA 3′-End Formation Mediated by Uncoupling of Cleavage and Polyadenylation,” Mol. Cell. Biol., vol. 22, no. 5, pp. 1379–1389, 2002.

[42] F. Gallardo, C. Olivier, A. T. Dandjinou, R. J. Wellinger, and P. Chartrand, “TLC1 RNA nucleo-cytoplasmic trafficking links telomerase biogenesis to its recruitment to telomeres,” EMBO J., vol. 27, no. 5, pp. 748–757, 2008.

[43] E. H. Blackburn, E. S. Epel, and J. Lin, “Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection,” Science (80-. )., vol. 350, no. 6265, pp. 1193–1198, 2015.

[44] Y. Vasianovich and R. J. Wellinger, “Life and Death of Yeast Telomerase RNA,” J. Mol. Biol., vol. 429, no. 21, pp. 3242–3254, 2017.

[45] W. Tang, R. Kannan, M. Blanchette, and P. Baumann, “Telomerase RNA biogenesis involves sequential binding by Sm and Lsm complexes,” Nature, vol. 484, no. 7393, pp. 260–264, 2012.

[46] O. Komonyi et al., “DTL, the Drosophila homolog of PIMT/Tgs1 nuclear receptor coactivator-interacting protein/RNA methyltransferase, has an essential role in development,” J. Biol. Chem., vol. 280, no. 13, pp. 12397–12404, 2005.

[47] Y. Jia et al., “Early embryonic lethality of mice with disrupted transcription cofactor PIMT/NCOA6IP/Tgs1 gene,” Mech. Dev., vol. 129, no. 9–12, pp. 193–207, 2012.

[48] A. Matsuyama et al., “ORFeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe,” Nat. Biotechnol., vol. 24, no. 7, pp. 841–847, 2006.

[49] A. Shimada et al., “Phosphorylation of Swi6/HP1 regulates transcriptional gene silencing at heterochromatin,” Genes Dev., vol. 23, no. 1, pp. 18–23, 2009.

[50] P. Schuchert and J. Kohli, “The Ade6-M26 Mutation of Schizosaccharomyces Pombe Increases the Frequency of Crossing over.,” Genetics, vol. 119, no. 3, pp. 507–50715, 1988.

[51] J. B. Keeney and J. D. Boeke, “Efficient targeted integration at leu1-32 and ura4-294 in Schizosaccharomyces pombe,” Genetics, vol. 136, no. 3, pp. 849–856, 1994.

[52] Q. Geissmann, “OpenCFU, a New Free and Open-Source Software to Count Cell Colonies and Other Circular Objects,” PLoS One, vol. 8, no. 2, pp. 1–10, 2013.

[53] S. Schneider, B. Schwer, S. Shuman, A. Ramirez, and S. Hausmann, “Biochemical and genetic analysis of RNA cap guanine-N2 methyltransferases from Giardia lamblia and Schizosaccharomyces pombe,” Nucleic Acids Res., vol. 35, no. 5, pp. 1411–1420, 2007.

[54] S. Hausmann, A. Ramirez, S. Schneider, B. Schwer, and S. Shuman, “Biochemical and genetic analysis of RNA cap guanine-N2 methyltransferases from Giardia lamblia and Schizosaccharomyces pombe,” Nucleic Acids Res., vol. 35, no. 5, pp. 1411–1420, 2007.

[55] M. Sadaie, T. Iida, T. Urano, and J. I. Nakayama, “A chromodomain protein, Chp1, is required for the establishment of heterochromatin in fission yeast,” EMBO J., vol. 23, no. 19, pp. 3825–3835, 2004.

[56] M. Sadaie, T. Iida, T. Urano, and J. I. Nakayama, “A chromodomain protein, Chp1, is required for the establishment of heterochromatin in fission yeast,” EMBO J., vol. 23, no. 19, pp. 3825–3835, 2004.

[57] A. Buscaino, E. Lejeune, P. Audergon, G. Hamilton, A. Pidoux, and R. C. Allshire, “Distinct roles for Sir2 and RNAi in centromeric heterochromatin nucleation, spreading and maintenance,” EMBO J., vol. 32, no. 9, pp. 1250–1264, 2013.

[58] J. Mouaikel, C. Verheggen, E. Bertrand, J. Tazi, and R. Bordonné, “Hypermethylation of the cap structure of both yeast snRNAs and snoRNAs requires a conserved methyltransferase that is localized to the nucleolus,” Mol. Cell, vol. 9, no. 4, pp. 891–901, 2002.

[59] Z. R. Qiu, S. Shuman, and B. Schwer, “An essential role for trimethylguanosine RNA caps in Saccharomyces cerevisiae meiosis and their requirement for splicing of SAE3 and PCH2 meiotic pre-mRNAs,” Nucleic Acids Res., vol. 39, no. 13, pp. 5633–5646, 2011.

[60] L. Cheng, Y. Zhang, Y. Zhang, T. Chen, Y. Z. Xu, and Y. S. Rong, “Loss of the RNA trimethylguanosine cap is compatible with nuclear accumulation of spliceosomal snRNAs but not pre-mRNA splicing or snRNA processing during animal development,” PLoS Genet., vol. 16, no. 10, pp. 1–28, 2020.

[61] E. H. Bayne et al., “Splicing factors facilitate RNAi-directed silencing in fission yeast,” Science (80-. )., vol. 322, no. 5901, pp. 602–606, 2008.

[62] M. Chinen, M. Morita, K. Fukumura, and T. Tani, “Involvement of the spliceosomal U4 small nuclear RNA in heterochromatic gene silencing at fission yeast centromeres,” J. Biol. Chem., vol. 285, no. 8, pp. 5630–5638, 2010.

[63] S. P. Kallgren et al., “The Proper Splicing of RNAi Factors Is Critical for Pericentric Heterochromatin Assembly in Fission Yeast,” PLoS Genet., vol. 10, no. 5, pp. 1–11, 2014.

[64] M. Mutazono et al., “The intron in centromeric noncoding RNA facilitates RNAi-mediated formation of heterochromatin,” PLoS Genet., vol. 13, no. 2, pp. 1–25, 2017.

[65] N. N. Lee et al., “XMtr4-like protein coordinates nuclear RNA processing for heterochromatin assembly and for telomere maintenance,” Cell, vol. 155, no. 5, p. 1061, 2013.

[66] S. Urushiyama, T. Tani, and Y. Ohshima, “Isolation of novel pre-mRNA splicing mutants of Schizosaccharomyces pombe,” Mol. Gen. Genet., vol. 253, no. 1–2, pp. 118–127, 1996.

[67] H. Kato, D. B. Goto, R. A. Martienssen, T. Urano, K. Furukawa, and Y. Murakami, “Molecular Biology: RNA polymerase II is required for RNAi-dependent heterochromatin assembly,” Science (80-. )., vol. 309, no. 5733, pp. 467–469, 2005.

[68] M. Nakama, K. Kawakami, T. Kajitani, T. Urano, and Y. Murakami, “DNA-RNA hybrid formation mediates RNAi-directed heterochromatin formation,” Genes to Cells, vol. 17, no. 3, pp. 218–233, 2012.

[69] T. Kajitani et al., “Ser7 of RNAPII-CTD facilitates heterochromatin formation by linking ncRNA to RNAi,” Proc. Natl. Acad. Sci., vol. 114, no. 52, pp. E11208–E11217, 2017.

[70] A. Hayashi, M. Ishida, R. Kawaguchi, T. Urano, Y. Murakami, and J. I. Nakayama, “Heterochromatin protein 1 homologue Swi6 acts in concert with Ers1 to regulate RNAi-directed heterochromatin assembly,” Proc. Natl. Acad. Sci. U. S. A., vol. 109, no. 16, pp. 6159–6164, 2012.

[71] E. H. Bayne, D. A. Bijos, S. A. White, F. de Lima Alves, J. Rappsilber, and R. C. Allshire, “A systematic genetic screen identifies new factors influencing centromeric heterochromatin integrity in fission yeast,” Genome Biol., vol. 15, no. 10, p. 481, 2014.

[72] D. Moazed et al., “Studies on the mechanism of RNAi-dependent heterochromatin assembly,” Cold Spring Harb. Symp. Quant. Biol., vol. 71, pp. 461– 671, 2006.

[73] Y. J. Lee et al., “RNA polymerase I stability couples cellular growth to metal availability,” Mol. Cell, vol. 51, no. 1, pp. 105–115, 2013.

[74] B. Schwer, H. Erdjument-Bromage, and S. Shuman, “Composition of yeast snRNPs and snoRNPs in the absence of trimethylguanosine caps reveals nuclear cap binding protein as a gained U1 component implicated in the cold-sensitivity of tgs1δ cells,” Nucleic Acids Res., vol. 39, no. 15, pp. 6715–6728, 2011.

[75] A. Shetty et al., “Spt5 Plays Vital Roles in the Control of Sense and Antisense Transcription Elongation,” Mol. Cell, vol. 66, no. 1, pp. 77-88.e5, 2017.

[76] I. M. Hall, G. D. Shankaranarayana, K. ichi Noma, N. Ayoub, A. Cohen, and S. I. S. Grewal, “Establishment and maintenance of a heterochromatin domain,” Science (80-. )., vol. 297, no. 5590, pp. 2232–2237, 2002.

[77] K. Ekwall, “The RITS Complex - A Direct Link between Small RNA and Heterochromatin,” Mol. Cell, vol. 13, no. 3, pp. 304–305, 2004.

[78] M. Marasovic, M. Zocco, and M. Halic, “Argonaute and triman generate dicer-independent prirnas and mature siRNAs to initiate heterochromatin formation,” Mol. Cell, vol. 52, no. 2, pp. 173–183, 2013.

[79] I. Djupedal and K. Ekwall, “Epigenetics: Heterochromatin meets RNAi,” Cell Res., vol. 19, no. 3, pp. 282–295, 2009.

[80] C. Keller, R. Adaixo, R. Stunnenberg, K. J. Woolcock, S. Hiller, and M. Bühler, “HP1 Swi6 Mediates the Recognition and Destruction of Heterochromatic RNA Transcripts,” Mol. Cell, vol. 47, no. 2, pp. 215–227, 2012.

[81] J. Hamm and I. W. Mattaj, “Monomethylated cap structures facilitate RNA export from the nucleus,” Cell, vol. 63, no. 1, pp. 109–118, 1990.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る