リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Protein Trafficking in Plasmodium falciparum-infected Erythrocytes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Protein Trafficking in Plasmodium falciparum-infected Erythrocytes

KATO Kentaro 東北大学

2020.03

概要

Malaria remains one of the world’s most important infectious diseases. Malaria parasites make modifications to host erythrocytes that are essential to their survival and pathogenesis and are facilitated by parasite proteins exported to the host cytoplasm. These exported proteins form a functional trafficking complex in the host cytoplasm to transport virulence determinants to the erythrocyte surface; this complex, termed the Maurer’s cleft, is thus essential for malaria virulence. Some of these exported proteins form a large protein complex that leads to profound structural and morphological changes in the host erythrocytes. In this report, I review the exported proteins in Plasmodium falciparum-infected erythrocytes. Because these proteins are closely linked to malaria pathogenesis, the information provided herein is important for our understanding of the molecular mechanisms involved in the pathogenesis of P. falciparum infection.

参考文献

Alam, M. S., V. Choudhary, M. Zeeshan, R. K. Tyagi, S. Rathore and Y. D. Sharma (2015) Interaction of Plasmodium vivax Tryptophan- rich Antigen PvTRAg38 with Band 3 on Human Erythrocyte Surface Facilitates Parasite Growth. Journal of Biological Chemistry, 290: 20257-20272.

Batinovic, S., E. McHugh, S. A. Chisholm, K. Matthews, B. Liu, L. Dumont, S. C. Charnaud, M. P. Schneider, P. R. Gilson, T. F. de Koning-Ward, M. W. A. Dixon and L. Tilley (2017) An exported protein-interacting complex involved in the trafficking of virulence determinants in Plasmodium-infected erythrocytes. Nature Communications, 8: 16044.

Biernatowska, A., K. Augoff, J. Podkalicka, S. Tabaczar, W. Gajdzik- Nowak, A. Czogalla and A. F. Sikorski (2017) MPP1 directly interacts with flotillins in erythrocyte membrane - Possible mechanism of raft domain formation. Biochimica et Biophysica Acta(BBA) Biomembranes, 1859: 2203-2212.

Cooke, B. M., D. W. Buckingham, F. K. Glenister, K. M. Fernandez, L. H. Bannister, M. Marti, N. Mohandas and R. L. Coppel (2006) A Maurer's cleft-associated protein is essential for expression of the major malaria virulence antigen on the surface of infected red blood cells. Journal of Cell Biology, 172: 899-908.

Curtidor, H., M. Ocampo, L. E. Rodriguez, R. Lopez, J. E. Garcia, J. Valbuena, R. Vera, A. Puentes, J. Leiton, L. J. Cortes, Y. López, M. A. Patarroyo and M. E. Patarroyo (2006) Plasmodium falciparum TryThrA antigen synthetic peptides block in vitro merozoite invasion to erythrocytes. Biochemical and Biophysical Research Communications, 339: 888-896.

De Niz, M., A. K. Ullrich, A. Heiber, A. Blancke Soares, C. Pick, R. Lyck, D. Keller, G. Kaiser, M. Prado, S. Flemming, H. del Portillo, C. J. Janse, V. Heussler and T. Spielmann (2016) The machinery underlying malaria parasite virulence is conserved between rodent and human malaria parasites. Nature Communications, 7: 11659.

Egan, E. S., R. H. Jiang, M. A. Moechtar, N. S. Barteneva, M. P. Weekes, L. V. Nobre, S. P. Gygi, J. A. Paulo, C. Frantzreb, Y. Tani, J. Takahashi, S. Watanabe, J. Goldberg, A. S. Paul, C. Brugnara, D. E. Root, R. C. Wiegand, J. G. Doench and M. T. Duraisingh (2015) Malaria. A forward genetic screen identifies erythrocyte CD55 as essential for Plasmodium falciparum invasion. Science, 348: 711- 714.

Fairhurst, R. M., D. I. Baruch, N. J. Brittain, G. R. Ostera, J. S. Wallach, H. L. Hoang, K. Hayton, A. Guindo, M. O. Makobongo, O. M. Schwartz, A. Tounkara, O. K. Doumbo, D. A. Diallo, H. Fujioka, M. Ho and T. E. Wellems (2005) Abnormal display of PfEMP-1 on erythrocytes carrying haemoglobin C may protect against malaria. Nature, 435: 1117-1121.

Hanssen, E., P. Hawthorne, M. W. Dixon, K. R. Trenholme, P. J. McMillan, T. Spielmann, D. L. Gardiner and L. Tilley (2008) Targeted mutagenesis of the ring-exported protein-1 of Plasmodium falciparum disrupts the architecture of Maurer's cleft organelles. Molecular Microbiology, 69: 938-953.

Heiber, A., F. Kruse, C. Pick, C. Gruring, S. Flemming, A. Oberli, H. Schoeler, S. Retzlaff, P. Mesen-Ramirez, J. A. Hiss, M. Kadekoppala, L. Hecht, A. A. Holder, T. W. Gilberger and T. Spielmann (2013) Identification of new PNEPs indicates a substantial non-PEXEL exportome and underpins common features in Plasmodium falciparum protein export. PLoS Pathogens, 9: e1003546.

Hiller, N. L., S. Bhattacharjee, C. van Ooij, K. Liolios, T. Harrison, C. Lopez-Estrano and K. Haldar (2004) A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science, 306: 1934-1937.

Janes, J. H., C. P. Wang, E. Levin-Edens, I. Vigan-Womas, M. Guillotte, M. Melcher, O. Mercereau-Puijalon and J. D. Smith (2011) Investigating the host binding signature on the Plasmodium falciparum PfEMP1 protein family. PLoS Pathogens, 7: e1002032.

Kumar, V., J. Kaur, A. P. Singh, V. Singh, A. Bisht, J. J. Panda, P. C. Mishra and R. Hora (2018) PHISTc protein family members localize to different subcellular organelles and bind Plasmodium falciparum major virulence factor PfEMP-1. The Febs Journal, 285: 294-312.

Lach, A., M. Grzybek, E. Heger, J. Korycka, M. Wolny, J. Kubiak, A. Kolondra, D. M. Bogusławska, K. Augoff, M. Majkowski, J. Podkalicka, J. Kaczor, A. Stefanko, K. Kuliczkowski and A. F. Sikorski (2012) Palmitoylation of MPP1 (membrane-palmitoylated protein 1)/p55 is crucial for lateral membrane organization in erythroid cells. Journal of Biological Chemistry, 287: 18974- 18984.

LaCount, D. J., M. Vignali, R. Chettier, A. Phansalkar, R. Bell, J. R. Hesselberth, L. W. Schoenfeld, I. Ota, S. Sahasrabudhe, C. Kurschner, S. Fields and R. E. Hughes (2005) A protein interaction network of the malaria parasite Plasmodium falciparum. Nature, 438: 103-107.

Lanzer, M., H. Wickert, G. Krohne, L. Vincensini and C. Braun Breton (2006) Maurer’s clefts: a novel multi-functional organelle in the cytoplasm of Plasmodium falciparum-infected erythrocytes. International Journal for Parasitology, 36: 23-36.

Maier, A. G., B. M. Cooke, A. F. Cowman and L. Tilley (2009) Malaria parasite proteins that remodel the host erythrocyte. Nature Reviews Microbiology, 7: 341-354.

Maier, A. G., M. Rug, M. T. O'Neill, J. G. Beeson, M. Marti, J. Reeder and A. F. Cowman (2007) Skeleton-binding protein 1 functions at the parasitophorous vacuole membrane to traffic PfEMP1 to the Plasmodium falciparum-infected erythrocyte surface. Blood, 109: 1289-1297.

Maier, A. G., M. Rug, M. T. O'Neill, M. Brown, S. Chakravorty, T. Szestak, J. Chesson, Y. Wu, K. Hughes, R. L. Coppel, C. Newbold, J. G. Beeson, A. Craig, B. S. Crabb and A. F. Cowman (2008) Exported proteins required for virulence and rigidity of Plasmodium falciparum-infected human erythrocytes. Cell, 134: 48-61.

Mantel, P. Y., A. N. Hoang, I. Goldowitz, D. Potashnikova, B. Hamza, I. Vorobjev, I. Ghiran, M. Toner, D. Irimia, A. R. Ivanov, N. Barteneva and M. Marti (2013) Malaria-infected erythrocyte- derived microvesicles mediate cellular communication within the parasite population and with the host immune system. Cell Host and Microbe, 13: 521-534.

Marti, M., R. T. Good, M. Rug, E. Knuepfer and A. F. Cowman (2004) Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science, 306: 1930-1933.

Miller, L. H., D. I. Baruch, K. Marsh and O. K. Doumbo (2002) The pathogenic basis of malaria. Nature, 415: 673-679.

Oberli, A., L. M. Slater, E. Cutts, F. Brand, E. Mundwiler-Pachlatko, S. Rusch, M. F. Masik, M. C. Erat, H. P. Beck and I. Vakonakis (2014) A Plasmodium falciparum PHIST protein binds the virulence factor PfEMP1 and comigrates to knobs on the host cell surface. The Faseb Journal, 28: 4420-4433.

Oberli, A., L. Zurbrugg, S. Rusch, F. Brand, M. E. Butler, J. L. Day, E. E. Cutts, T. Lavstsen, I. Vakonakis and H. P. Beck (2016) Plasmodium falciparum Plasmodium helical interspersed subtelomeric proteins contribute to cytoadherence and anchor P. falciparum erythrocyte membrane protein 1 to the host cell cytoskeleton. Cellular Microbiology, 18: 1415-1428.

Oh, S. S., S. Voigt, D. Fisher, S. J. Yi, P. J. LeRoy, L. H. Derick, S. Liu and A. H.Chishti (2000) Plasmodium falciparum erythrocyte membrane protein 1 is anchored to the actin-spectrin junction and knob-associated histidine-rich protein in the erythrocyte skeleton. Molecular and Biochemical Parasitology, 108: 237-247.

Olszewski, K. L., J. M. Morrisey, D. Wilinski, J. M. Burns, A. B. Vaidya, J. D. Rabinowitz and M. Llinas (2009) Host-parasite interactions revealed by Plasmodium falciparum metabolomics. Cell Host and Microbe, 5: 191-199.

Proellocks, N. I., S. Herrmann, D. W. Buckingham, E. Hanssen, E. K. Hodges, B. Elsworth, B. J. Morahan, R. L. Coppel and B. M. Cooke (2014) A lysine-rich membrane-associated PHISTb protein involved in alteration of the cytoadhesive properties of Plasmodium falciparum-infected red blood cells. The Faseb Journal, 28: 3103-3113.

Przyborski, J. M., S. K. Miller, J. M. Pfahler, P. P. Henrich, P. Rohrbach, B. S. Crabb and M. Lanzer (2005) Trafficking of STEVOR to the Maurer’s clefts in Plasmodium falciparum- infected erythrocytes. The EMBO Journal, 24: 2306-2317.

Quinn, B. J., E. J. Welch, A. C. Kim, M. A. Lokuta, A. Huttenlocher, A. A. Khan, S. M. Kuchay and A. H. Chishti (2009) Erythrocyte scaffolding protein p55/MPP1 functions as an essential regulator of neutrophil polarity. Proceeding of National Academy of Science of the United States of America, 106: 19842-19847.

Rug, M., M. Cyrklaff, A. Mikkonen, L. Lemgruber, S. Kuelzer, C. P. Sanchez, J. Thompson, E. Hanssen, M. O'Neill, C. Langer, M. Lanzer, F. Frischknecht, A. G. Maier and A. F. Cowman (2014) Export of virulence proteins by malaria-infected erythrocytes involves remodeling of host actin cytoskeleton. Blood, 124: 3459- 3468.

Spycher, C., M. Rug, E. Pachlatko, E. Hanssen, D. Ferguson, A. F. Cowman, L. Tilley and H. P. Beck (2008) The Maurer's cleft protein MAHRP1 is essential for trafficking of PfEMP1 to the surface of Plasmodium falciparum-infected erythrocytes. Molecular Microbiology, 68: 1300-1314.

Takano, R., H. Kozuka-Hata, D. Kondoh, H. Bochimoto, M. Oyama and K. Kato (2019) A High-Resolution Map of SBP1 Interactomes in Plasmodium falciparum-infected Erythrocytes. iScience, 19: 703-714.

Waller, K. L., B. M. Cooke, W. Nunomura, N. Mohandas and R. L. Coppel (1999) Mapping the binding domains involved in the interaction between the Plasmodium falciparum knob-associated histidine-rich protein (KAHRP) and the cytoadherence ligand P. falciparum erythrocyte membrane protein 1 (PfEMP1). Journal of Biological Chemistry, 274: 23808-23813.

Waller, K. L., R. A. Muhle, L. M. Ursos, P. Horrocks, D. Verdier- Pinard, A. B. Sidhu, H. Fujioka, P. D. Roepe and D. A. Fidock (2003) Chloroquine resistance modulated in vitro by expression levels of the Plasmodium falciparum chloroquine resistance transporter. Journal of Biological Chemistry, 278: 33593-33601.

WHO | World malaria report 2018. WHO Available at: http://www. who.int/malaria/publications/world-malaria-report-2018/en/.(Accessed: 30th June 2019)

Wickham, M. E., M. Rug, S. A. Ralph, N. Klonis, G. I. McFadden, L. Tilley and A. F. Cowman (2001) Trafficking and assembly of the cytoadherence complex in Plasmodium falciparum-infected human erythrocytes. The EMBO Journal, 20: 5636-5649.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る