リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Subcellular localization of nucleocapsid protein of severe fever with thrombocytopenia syndrome virus (SFTSV) and characterization of quasi-species of SFTSV」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Subcellular localization of nucleocapsid protein of severe fever with thrombocytopenia syndrome virus (SFTSV) and characterization of quasi-species of SFTSV

Lokupathirage, Sithumini Madubashini Wimalasiri 北海道大学

2023.09.25

概要

SFTS is an emerging zoonosis caused by the SFTSV, which belongs to the genus Bandavirus
in the family Phenuiviridae, order Bunyavirales according to the International Committee on
Taxonomy of Viruses classification criteria. SFTS was first reported in Hubei province in
China in 2009; in Japan, it was first identified in Yamaguchi Prefecture in 20135,12. SFTS
patients have been reported in Korea and Vietnam, and SFTS is now considered as an
infectious disease widely distributed in East Asia13,14. SFTS is a tick-borne zoonotic disease
characterized by fever, gastrointestinal symptoms, thrombocytopenia, and leukopenia15. The
fatality rate of SFTS in Japan is 6%–30%, while the fatality rate in other countries is 12%–
47%6,16,17. Since effective drugs and vaccines have not yet been developed, it is essential to
understand the viral replication mechanism to develop antiviral agents against SFTS.
The RNA genome of SFTSV is tripartite, negative or ambi-sense, single-stranded RNA
designated as S, M, and L segments, which encode for the N protein and the NSs, GP, and L
protein which has main role on RdRp activity, respectively. The bunyaviruses enter the cell
by binding to receptors such as C-type lectin on dendritic cells via the GP, and then the virus
is taken up into the cells by clathrin-dependent endocytosis18,19. As a result, the RNP complex
is released into the cell cytoplasm, which causes transcription and replication of vRNA. In
the cytoplasm, N protein and RdRp are expressed in the cytoplasm where they form the RNP
complex with the vRNA20. Gn and Gc, which are translated in the endoplasmic reticulum
(ER), associate with the RNP complex in the ERGIC or Golgi apparatus, followed by
budding at the membranes of the Golgi apparatus21,22. Finally, Golgi vesicles containing virus
particles are trafficked to the cell surface and release infectious virions extracellularly via
exocytosis. ...

この論文で使われている画像

参考文献

Yokomizo, K., Tomozane, M., Sano, C. & Ohta, R. Clinical Presentation and

Mortality of Severe Fever with Thrombocytopenia Syndrome in Japan: A Systematic

Review of Case Reports. Int J Environ Res Public Health 19,

doi:10.3390/ijerph19042271 (2022).

Yu, X. J. et al. Fever with thrombocytopenia associated with a novel bunyavirus in

China. N Engl J Med 364, 1523-1532, doi:10.1056/NEJMoa1010095 (2011).

Ryu, B. H. et al. Extensive severe fever with thrombocytopenia syndrome virus

contamination in surrounding environment in patient rooms. Clin Microbiol Infect 24,

911.e911-911.e914, doi:10.1016/j.cmi.2018.01.005 (2018).

Chen, C. et al. Animals as amplification hosts in the spread of severe fever with

thrombocytopenia syndrome virus: A systematic review and meta-analysis. Int J Infect

Dis 79, 77-84, doi:10.1016/j.ijid.2018.11.017 (2019).

Takahashi, T. et al. The first identification and retrospective study of Severe Fever

with Thrombocytopenia Syndrome in Japan. J Infect Dis 209, 816-827,

doi:10.1093/infdis/jit603 (2014).

Liu, Q., He, B., Huang, S. Y., Wei, F. & Zhu, X. Q. Severe fever with

thrombocytopenia syndrome, an emerging tick-borne zoonosis. Lancet Infect Dis 14,

763-772, doi:10.1016/S1473-3099(14)70718-2 (2014).

Filone, C. M., Heise, M., Doms, R. W. & Bertolotti-Ciarlet, A. Development and

characterization of a Rift Valley fever virus cell-cell fusion assay using alphavirus

replicon vectors. Virology 356, 155-164, doi:10.1016/j.virol.2006.07.035 (2006).

Lozach, P. Y. et al. Entry of bunyaviruses into mammalian cells. Cell Host Microbe 7,

488-499, doi:10.1016/j.chom.2010.05.007 (2010).

64

Nishio, S. et al. Establishment of Subclones of the Severe Fever with

Thrombocytopenia Syndrome Virus YG1 Strain Selected Using Low pH-Dependent

Cell Fusion Activity. Jpn J Infect Dis 70, 388-393, doi:10.7883/yoken.JJID.2016.357

(2017).

10

Gwon, Y. D., Nematollahi Mahani, S. A., Nagaev, I., Mincheva-Nilsson, L. &

Evander, M. Rift Valley Fever Virus Propagates in Human Villous Trophoblast Cell

Lines and Induces Cytokine mRNA Responses Known to Provoke Miscarriage.

Viruses 13, doi:10.3390/v13112265 (2021).

11

Tsuda, Y. et al. The amino acid at position 624 in the glycoprotein of SFTSV (severe

fever with thrombocytopenia virus) plays a critical role in low-pH-dependent cell

fusion activity. Biomed Res 38, 89-97, doi:10.2220/biomedres.38.89 (2017).

12

Xu, B. et al. Metagenomic analysis of fever, thrombocytopenia and leukopenia

syndrome (FTLS) in Henan Province, China: discovery of a new bunyavirus. PLoS

Pathog 7, e1002369, doi:10.1371/journal.ppat.1002369 (2011).

13

Kim, K. H., Ko, M. K., Kim, N., Kim, H. H. & Yi, J. Seroprevalence of Severe Fever

with Thrombocytopenia Syndrome in Southeastern Korea, 2015. J Korean Med Sci

32, 29-32, doi:10.3346/jkms.2017.32.1.29 (2017).

14

Tran, X. C. et al. Endemic Severe Fever with Thrombocytopenia Syndrome, Vietnam.

Emerg Infect Dis 25, 1029-1031, doi:10.3201/eid2505.181463 (2019).

15

Wen, H. L. et al. Severe fever with thrombocytopenia syndrome, Shandong Province,

China, 2011. Emerg Infect Dis 20, 1-5, doi:10.3201/eid2001.120532 (2014).

16

Robles, N. J. C., Han, H. J., Park, S. J. & Choi, Y. K. Epidemiology of severe fever

and thrombocytopenia syndrome virus infection and the need for therapeutics for the

prevention. Clin Exp Vaccine Res 7, 43-50, doi:10.7774/cevr.2018.7.1.43 (2018).

65

17

Kobayashi, Y. et al. Severe Fever with Thrombocytopenia Syndrome, Japan, 20132017. Emerg Infect Dis 26, 692-699, doi:10.3201/eid2604.191011 (2020).

18

Plegge, T., Hofmann-Winkler, H., Spiegel, M. & Pöhlmann, S. Evidence that

Processing of the Severe Fever with Thrombocytopenia Syndrome Virus Gn/Gc

Polyprotein Is Critical for Viral Infectivity and Requires an Internal Gc Signal

Peptide. PLoS One 11, e0166013, doi:10.1371/journal.pone.0166013 (2016).

19

Hofmann, H. et al. Severe fever with thrombocytopenia virus glycoproteins are

targeted by neutralizing antibodies and can use DC-SIGN as a receptor for pHdependent entry into human and animal cell lines. J Virol 87, 4384-4394,

doi:10.1128/JVI.02628-12 (2013).

20

Zhou, H., Sun, Y., Guo, Y. & Lou, Z. Structural perspective on the formation of

ribonucleoprotein complex in negative-sense single-stranded RNA viruses. Trends

Microbiol 21, 475-484, doi:10.1016/j.tim.2013.07.006 (2013).

21

Jäntti, J. et al. Immunocytochemical analysis of Uukuniemi virus budding

compartments: role of the intermediate compartment and the Golgi stack in virus

maturation. J Virol 71, 1162-1172, doi:10.1128/JVI.71.2.1162-1172.1997 (1997).

22

Lundu, T. et al. Targeting of severe fever with thrombocytopenia syndrome virus

structural proteins to the ERGIC (endoplasmic reticulum Golgi intermediate

compartment) and Golgi complex. Biomed Res 39, 27-38,

doi:10.2220/biomedres.39.27 (2018).

23

Ito, N. et al. Improved recovery of rabies virus from cloned cDNA using a vaccinia

virus-free reverse genetics system. Microbiol Immunol 47, 613-617,

doi:10.1111/j.1348-0421.2003.tb03424.x (2003).

66

24

Jiao, L. et al. Structure of severe fever with thrombocytopenia syndrome virus

nucleocapsid protein in complex with suramin reveals therapeutic potential. J Virol

87, 6829-6839, doi:10.1128/JVI.00672-13 (2013).

25

Noda, K. et al. The Polarity of an Amino Acid at Position 1891 of Severe Fever with

Thrombocytopenia Syndrome Virus L Protein Is Critical for the Polymerase Activity.

Viruses 13, doi:10.3390/v13010033 (2020).

26

Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat

Methods 9, 676-682, doi:10.1038/nmeth.2019 (2012).

27

Zinchuk, V., Zinchuk, O. & Okada, T. Quantitative colocalization analysis of

multicolor confocal immunofluorescence microscopy images: pushing pixels to

explore biological phenomena. Acta Histochem Cytochem 40, 101-111,

doi:10.1267/ahc.07002 (2007).

28

Ramanathan, H. N. et al. Dynein-dependent transport of the hantaan virus

nucleocapsid protein to the endoplasmic reticulum-Golgi intermediate compartment. J

Virol 81, 8634-8647, doi:10.1128/JVI.00418-07 (2007).

29

Panda, D. et al. RNAi screening reveals requirement for host cell secretory pathway

in infection by diverse families of negative-strand RNA viruses. Proc Natl Acad Sci U

S A 108, 19036-19041, doi:10.1073/pnas.1113643108 (2011).

30

Novoa, R. R., Calderita, G., Cabezas, P., Elliott, R. M. & Risco, C. Key Golgi factors

for structural and functional maturation of bunyamwera virus. J Virol 79, 1085210863, doi:10.1128/JVI.79.17.10852-10863.2005 (2005).

31

Salanueva, I. J. et al. Polymorphism and structural maturation of bunyamwera virus in

Golgi and post-Golgi compartments. J Virol 77, 1368-1381,

doi:10.1128/jvi.77.2.1368-1381.2003 (2003).

67

32

Albornoz, A., Hoffmann, A. B., Lozach, P. Y. & Tischler, N. D. Early BunyavirusHost Cell Interactions. Viruses 8, doi:10.3390/v8050143 (2016).

33

Piper, M. E., Sorenson, D. R. & Gerrard, S. R. Efficient cellular release of Rift Valley

fever virus requires genomic RNA. PLoS One 6, e18070,

doi:10.1371/journal.pone.0018070 (2011).

34

Shi, X., Lappin, D. F. & Elliott, R. M. Mapping the Golgi targeting and retention

signal of Bunyamwera virus glycoproteins. J Virol 78, 10793-10802,

doi:10.1128/JVI.78.19.10793-10802.2004 (2004).

35

Lopez, N., Muller, R., Prehaud, C. & Bouloy, M. The L protein of Rift Valley fever

virus can rescue viral ribonucleoproteins and transcribe synthetic genome-like RNA

molecules. J Virol 69, 3972-3979, doi:10.1128/JVI.69.7.3972-3979.1995 (1995).

36

Strandin, T., Hepojoki, J., Wang, H., Vaheri, A. & Lankinen, H. The cytoplasmic tail

of hantavirus Gn glycoprotein interacts with RNA. Virology 418, 12-20,

doi:10.1016/j.virol.2011.06.030 (2011).

37

Strandin, T., Hepojoki, J. & Vaheri, A. Cytoplasmic tails of bunyavirus Gn

glycoproteins-Could they act as matrix protein surrogates? Virology 437, 73-80,

doi:10.1016/j.virol.2013.01.001 (2013).

38

Snippe, M., Smeenk, L., Goldbach, R. & Kormelink, R. The cytoplasmic domain of

tomato spotted wilt virus Gn glycoprotein is required for Golgi localisation and

interaction with Gc. Virology 363, 272-279, doi:10.1016/j.virol.2006.12.038 (2007).

39

Olal, D. et al. Structural insights into RNA encapsidation and helical assembly of the

Toscana virus nucleoprotein. Nucleic Acids Res 42, 6025-6037,

doi:10.1093/nar/gku229 (2014).

68

40

Gerlach, P., Malet, H., Cusack, S. & Reguera, J. Structural Insights into Bunyavirus

Replication and Its Regulation by the vRNA Promoter. Cell 161, 1267-1279,

doi:10.1016/j.cell.2015.05.006 (2015).

41

Muriaux, D. et al. Role of murine leukemia virus nucleocapsid protein in virus

assembly. J Virol 78, 12378-12385, doi:10.1128/JVI.78.22.12378-12385.2004 (2004).

42

Licata, J. M., Johnson, R. F., Han, Z. & Harty, R. N. Contribution of ebola virus

glycoprotein, nucleoprotein, and VP24 to budding of VP40 virus-like particles. J Virol

78, 7344-7351, doi:10.1128/JVI.78.14.7344-7351.2004 (2004).

43

Vennema, H. et al. Nucleocapsid-independent assembly of coronavirus-like particles

by co-expression of viral envelope protein genes. EMBO J 15, 2020-2028 (1996).

44

Swenson, D. L. et al. Generation of Marburg virus-like particles by co-expression of

glycoprotein and matrix protein. FEMS Immunol Med Microbiol 40, 27-31,

doi:10.1016/S0928-8244(03)00273-6 (2004).

45

Overby, A. K., Pettersson, R. F. & Neve, E. P. The glycoprotein cytoplasmic tail of

Uukuniemi virus (Bunyaviridae) interacts with ribonucleoproteins and is critical for

genome packaging. J Virol 81, 3198-3205, doi:10.1128/JVI.02655-06 (2007).

46

Brennan, B. et al. Reverse genetics system for severe fever with thrombocytopenia

syndrome virus. J Virol 89, 3026-3037, doi:10.1128/JVI.03432-14 (2015).

47

Tani, H. et al. Characterization of Glycoprotein-Mediated Entry of Severe Fever with

Thrombocytopenia Syndrome Virus. J Virol 90, 5292-5301, doi:10.1128/JVI.0011016 (2016).

48

Tani, H. et al. Identification of the amino acid residue important for fusion of severe

fever with thrombocytopenia syndrome virus glycoprotein. Virology 535, 102-110,

doi:10.1016/j.virol.2019.06.014 (2019).

69

49

Gao, C. et al. Nonstructural Protein NSs Activates Inflammasome and Pyroptosis

through Interaction with NLRP3 in Human Microglial Cells Infected with Severe

Fever with Thrombocytopenia Syndrome Bandavirus. J Virol 96, e0016722,

doi:10.1128/jvi.00167-22 (2022).

50

Suzuki, T. et al. Severe fever with thrombocytopenia syndrome virus targets B cells in

lethal human infections. J Clin Invest 130, 799-812, doi:10.1172/JCI129171 (2020).

51

Yoshikawa, T. et al. Phylogenetic and Geographic Relationships of Severe Fever With

Thrombocytopenia Syndrome Virus in China, South Korea, and Japan. J Infect Dis

212, 889-898, doi:10.1093/infdis/jiv144 (2015).

52

Shi, X. et al. Bunyamwera orthobunyavirus glycoprotein precursor is processed by

cellular signal peptidase and signal peptide peptidase. Proc Natl Acad Sci U S A 113,

8825-8830, doi:10.1073/pnas.1603364113 (2016).

53

Buchholz, U. J., Finke, S. & Conzelmann, K. K. Generation of bovine respiratory

syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication

in tissue culture, and the human RSV leader region acts as a functional BRSV genome

promoter. J Virol 73, 251-259, doi:10.1128/JVI.73.1.251-259.1999 (1999).

54

Johnson, K. N., Zeddam, J. L. & Ball, L. A. Characterization and construction of

functional cDNA clones of Pariacoto virus, the first Alphanodavirus isolated outside

Australasia. J Virol 74, 5123-5132, doi:10.1128/jvi.74.11.5123-5132.2000 (2000).

55

Sun, Y. et al. Nonmuscle myosin heavy chain IIA is a critical factor contributing to

the efficiency of early infection of severe fever with thrombocytopenia syndrome

virus. J Virol 88, 237-248, doi:10.1128/JVI.02141-13 (2014).

56

Wu, Y. et al. Structures of phlebovirus glycoprotein Gn and identification of a

neutralizing antibody epitope. Proc Natl Acad Sci U S A 114, E7564-E7573,

doi:10.1073/pnas.1705176114 (2017).

70

57

Dessau, M. & Modis, Y. Crystal structure of glycoprotein C from Rift Valley fever

virus. Proc Natl Acad Sci U S A 110, 1696-1701, doi:10.1073/pnas.1217780110

(2013).

58

Li, Z. et al. Activation of the NLRP3 inflammasome and elevation of interleukin-1β

secretion in infection by sever fever with thrombocytopenia syndrome virus. Sci Rep

12, 2573, doi:10.1038/s41598-022-06229-0 (2022).

71

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る