リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Manganese transport in mammals by zinc transporter family proteins, ZNT and ZIP」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Manganese transport in mammals by zinc transporter family proteins, ZNT and ZIP

Fujishiro, Hitomi Kambe, Taiho 京都大学 DOI:10.1016/j.jphs.2021.10.011

2022.01

概要

Manganese (Mn) is an essential trace element required for various biological processes. However, excess Mn causes serious side effects in humans, including parkinsonism. Thus, elucidation of Mn homeostasis at the systemic, cellular, and molecular levels is important. Many metal transporters and channels can be involved in the transport and homeostasis of Mn, and an increasing body of evidence shows that several zinc (Zn) transporters belonging to the ZIP and ZNT families, specifically, ZNT10, ZIP8, and ZIP14, play pivotal roles in Mn metabolism. Mutations in the genes encoding these transporter proteins are associated with congenital disorders related to dysregulated Mn homeostasis in humans. Moreover, single nucleotide polymorphisms of ZIP8 are associated with multiple clinical phenotypes. In this review, we discuss the recent literature on the structural and biochemical features of ZNT10, ZIP8, and ZIP14, including transport mechanisms, regulation of expression, and pathophysiological functions. Because a disturbance in Mn homeostasis is closely associated with a variety of phenotypes and risk of human diseases, these transporters constitute a significant target for drug development. An understanding of the roles of these key transporters in Mn metabolism should provide new insights into pharmacological applications of their inhibitors and enhancers in human diseases.

この論文で使われている画像

参考文献

or Mn reabsorption by ZIP8. Further mechanistic studies on the

physiological and pathological functions of ZIP8, ZIP14, and ZNT10

will provide a complete understanding of the regulatory mechanisms of systemic and cellular Mn homeostasis.

1. Aschner M, Vrana KE, Zheng W. Manganese uptake and distribution in the

central nervous system (CNS). Neurotoxicology. 1999;20(2e3):173e180.

2. Post JE. Manganese oxide minerals: crystal structures and economic and

environmental significance. Proc Natl Acad Sci U S A. 1999;96(7):3447e3454.

3. Bowman AB, Erikson KM, Aschner M. In: Huang S, ed. Manganese - the two

faces of essentiality and neurotoxicity. Metals and neurodegeneration. Kerala,

India: Research Signpost; 2010.

4. Christianson DW. Structural chemistry and biology of manganese metalloenzymes. Prog Biophys Mol Biol. 1997;67(2e3):217e252.

5. Couper J. On the effects of black oxide of manganese when inhaled into the

lungs. Br Ann Med Pharmacol. 1837;1(1):41e42.

6. Nelson K, Golnick J, Korn T, Angle C. Manganese encephalopathy: utility of

early magnetic resonance imaging. Br J Ind Med. 1993;50(6):510e513.

7. Kawata F. [Studies on monoamine metabolism in the rat brain with overdosage of manganese]. Nihon Hoigaku Zasshi. 1990;44(2):137e146.

8. Racette BA. Manganism in the 21st century: the Hanninen lecture. Neurotoxicology. 2014;45:201e207.

9. Schroeder HA, Balassa JJ, Tipton IH. Essential trace metals in man: manganese.

A study in homeostasis. J Chron Dis. 1966;19(5):545e571.

10. Greenberg DM, Campbell WW. Studies in mineral metabolism with the aid of

induced radioactive isotopes: IV-manganese. Proc Natl Acad Sci U S A.

1940;26(7):448e452.

11. Pollack S, George JN, Reba RC, Kaufman RM, Crosby WH. The absorption of

nonferrous metals in iron deficiency. J Clin Invest. 1965;44:1470e1473.

12. Gunshin H, Mackenzie B, Berger UV, et al. Cloning and characterization of a

mammalian proton-coupled metal-ion transporter. Nature. 1997;388(6641):

482e488.

13. Fujishiro H, Doi M, Enomoto S, Himeno S. High sensitivity of RBL-2H3 cells to

cadmium and manganese: an implication of the role of ZIP8. Metall.

2011;3(7):710e718.

14. Fujishiro H, Yano Y, Takada Y, Tanihara M, Himeno S. Roles of ZIP8, ZIP14, and

DMT1 in transport of cadmium and manganese in mouse kidney proximal

tubule cells. Metall. 2012;4(7):700e708.

15. Fujishiro H, Yoshida M, Nakano Y, Himeno S. Interleukin-6 enhances manganese accumulation in SH-SY5Y cells: implications of the up-regulation of

ZIP14 and the down-regulation of ZnT10. Metall. 2014;6(4):944e949.

16. Dalton TP, He L, Wang B, et al. Identification of mouse SLC39A8 as the

transporter responsible for cadmium-induced toxicity in the testis. Proc Natl

Acad Sci U S A. 2005;102(9):3401e3406.

17. He L, Girijashanker K, Dalton TP, et al. ZIP8, member of the solute-carrier-39

(SLC39) metal-transporter family: characterization of transporter properties.

Mol Pharmacol. 2006;70(1):171e180.

18. Quadri M, Federico A, Zhao T, et al. Mutations in SLC30A10 cause parkinsonism and dystonia with hypermanganesemia, polycythemia, and chronic

liver disease. Am J Hum Genet. 2012;90(3):467e477.

19. DeWitt MR, Chen P, Aschner M. Manganese efflux in Parkinsonism: insights

from newly characterized SLC30A10 mutations. Biochem Biophys Res Commun.

2013;432(1):1e4.

20. Tuschl K, Clayton PT, Gospe Jr SM, et al. Syndrome of hepatic cirrhosis, dystonia,

polycythemia, and hypermanganesemia caused by mutations in SLC30A10, a

manganese transporter in man. Am J Hum Genet. 2012;90(3):457e466.

21. Nishito Y, Tsuji N, Fujishiro H, et al. Direct comparison of manganese detoxification/efflux proteins and molecular characterization of ZnT10 as a manganese transporter. J Biol Chem. 2016;291(28):14773e14787.

22. Mukhopadhyay S. Familial manganese-induced neurotoxicity due to mutations in SLC30A10 or SLC39A14. Neurotoxicology. 2018;64:278e283.

23. Winslow JWW, Limesand KH, Zhao N. The functions of ZIP8, ZIP14, and ZnT10

in the regulation of systemic manganese homeostasis. Int J Mol Sci. 2020;21(9).

24. Anagianni S, Tuschl K. Genetic disorders of manganese metabolism. Curr

Neurol Neurosci Rep. 2019;19(6):33.

25. Balachandran RC, Mukhopadhyay S, McBride D, et al. Brain manganese and

the balance between essential roles and neurotoxicity. J Biol Chem.

2020;295(19):6312e6329.

26. Lu M, Fu D. Structure of the zinc transporter YiiP. Science. 2007;317(5845):

1746e1748.

27. Lu M, Chai J, Fu D. Structural basis for autoregulation of the zinc transporter

YiiP. Nat Struct Mol Biol. 2009;16(10):1063e1067.

28. Coudray N, Valvo S, Hu M, et al. Inward-facing conformation of the zinc

transporter YiiP revealed by cryoelectron microscopy. Proc Natl Acad Sci U S A.

2013;110(6):2140e2145.

29. Gupta S, Chai J, Cheng J, D'Mello R, Chance MR, Fu D. Visualizing the kinetic

power stroke that drives proton-coupled zinc(II) transport. Nature.

2014;512(7512):101e104.

30. Lopez-Redondo ML, Coudray N, Zhang Z, Alexopoulos J, Stokes DL. Structural

basis for the alternating access mechanism of the cation diffusion facilitator

YiiP. Proc Natl Acad Sci U S A. 2018;115(12):3042e3047.

31. Xue J, Xie T, Zeng W, Jiang Y, Bai X-C. Cryo-EM structures of human ZnT8 in

both outward- and inward-facing conformations. eLife. 2020;9.

1.4. Perspectives

Accumulating evidence has helped clarify the importance of Zn

transporters in cellular and systemic Mn metabolism through the

mobilization of Mn across the cellular membrane. Simultaneously,

new questions have arisen about their functions. Can these transporters flexibly discriminate between Zn and Mn? Can their Mn

transport activity be flexibly regulated? Considering the properties

of ZNT and ZIP transporters, it would be interesting to consider the

possibility that heterodimerization may occur between ZNT10 and

other ZNT proteins, or between ZIP8 or ZIP14 and other ZIP proteins

to control their Mn/Zn transport activity. ZNT10 has been shown to

heterodimerize with ZNT3,126 although this heterodimerization

needs to be investigated from the perspective of Mn pathophysiology. Answers to these questions need to be obtained for a understanding of Mn homeostasis.

The impairment of Mn homeostasis results in various diseases.

Genetic variation associated with Mn homeostasis likely leads to a

variety of symptoms and risk of diseases. Dietary Mn deficiency is

unlikely to occur in a normal individual; thus, an excess of Mn,

which may be associated with both rare and common neurodegenerative disorders,127 need to be intensively examined in the

future. In patients with parkinsonism caused by mutations in ZNT10

and ZIP14, chelation therapy with disodium calcium edetate is reported to show significant improvement,18,20,95 along with supplementation of iron, which is a competitive inhibitor of intestinal

Mn uptake. Thus, compounds that reduce Mn toxicity may lead to

the discovery and development of drugs for a number of human

diseases associated with altered Mn homeostasis. The recent

emergence of several small molecule inhibitors of ZIP transporters128,129 show the high possibility for novel pharmacological

applications by directly targeting ZNT10, ZIP8, and ZIP14 in human

diseases associated with these transporters. However, these inhibitors have not yet been used in animal studies or in human

patients. Considering ZNT10, ZIP8, and ZIP14 are expressed on the

cell surface, an antibodyedrug conjugate may be useful. In this

regard, an antibodyedrug conjugate consisting of an anti-ZIP6

humanized monoclonal antibody and a microtubule-disrupting

agent provides useful information because it showed the efficacy

in both in vitro and in vivo antitumor activity.130 It is needless to say

that molecular mechanisms underlying the association of ZNT10,

ZIP8, and ZIP14 with Zn and Mn metabolism should be clarified for

potential pharmacological.

Funding

This work was supported by a Grant-in-Aid for Scientific

Research on Innovative Areas “Integrated Bio-metal Science”

(MEXT KAKENHI Grant Number JP19H05770 to H.F. and

JP19H05768 to T.K.).

Declaration of competing interest

Both authors declare no competing financial and non-financial

interests.

131

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

H. Fujishiro and T. Kambe

Journal of Pharmacological Sciences 148 (2022) 125e133

32. Fukue K, Itsumura N, Tsuji N, et al. Evaluation of the roles of the cytosolic Nterminus and His-rich loop of ZNT proteins using ZNT2 and ZNT3 chimeric

mutants. Sci Rep. 2018;8(1):14084.

33. Kambe T, Taylor KM, Fu D. Zinc transporters and their functional integration

in mammalian cells. J Biol Chem. 2021;296:100320.

34. Suzuki E, Ogawa N, Takeda TA, et al. Detailed analyses of the crucial functions

of Zn transporter proteins in alkaline phosphatase activation. J Biol Chem.

2020;295(17):5669e5684.

35. Ohana E, Hoch E, Keasar C, et al. Identification of the Zn2þ binding site and

mode of operation of a mammalian Zn2þ transporter. J Biol Chem.

2009;284(26):17677e17686.

36. Shusterman E, Beharier O, Shiri L, et al. ZnT-1 extrudes zinc from mammalian

cells functioning as a Zn(2þ)/H(þ) exchanger. Metall. 2014;6(9):1656e1663.

37. Wei Y, Fu D. Selective metal binding to a membrane-embedded aspartate in

the Escherichia coli metal transporter YiiP (FieF). J Biol Chem. 2005;280(40):

33716e33724.

38. Fujimoto S, Itsumura N, Tsuji T, et al. Cooperative functions of ZnT1, metallothionein and ZnT4 in the cytoplasm are required for full activation of TNAP

in the early secretory pathway. PLoS One. 2013;8(10), e77445.

39. Tsuji T, Kurokawa Y, Chiche J, et al. Dissecting the process of activation of

cancer-promoting zinc-requiring ectoenzymes by zinc metalation mediated

by ZNT transporters. J Biol Chem. 2017;292(6):2159e2173.

40. Gustin JL, Zanis MJ, Salt DE. Structure and evolution of the plant cation

diffusion facilitator family of ion transporters. BMC Evol Biol. 2011;11:76.

41. Pedas P, Schiller Stokholm M, Hegelund JN, Ladegard AH, Schjoerring JK,

Husted S. Golgi localized barley MTP8 proteins facilitate Mn transport. PLoS

One. 2014;9(12), e113759.

42. Ueno D, Sasaki A, Yamaji N, et al. A polarly localized transporter for efficient

manganese uptake in rice. Native Plants. 2015;1:15170.

43. Tsunemitsu Y, Genga M, Okada T, et al. A member of cation diffusion facilitator family, MTP11, is required for manganese tolerance and high fertility in

rice. Planta. 2018;248(1):231e241.

44. Leyva-Illades D, Chen P, Zogzas CE, et al. SLC30A10 is a cell surface-localized

manganese efflux transporter, and parkinsonism-causing mutations block its

intracellular trafficking and efflux activity. J Neurosci. 2014;34(42):

14079e14095.

45. Kambe T, Suzuki E, Komori T. In: Fukada T, Kambe T, eds. Zinc transporters-A

review and a new view from biochemistry. Zinc Signaling. 2nd ed. SpringerNature; 2019:23e56.

46. Kambe T, Tsuji T, Fukue K. In: Fukada T, Kambe T, eds. Zinc transport proteins

and zinc signaling. Zinc signals in cellular functions and disorders. Tokyo:

Springer; 2014:27e53.

47. Palmiter RD, Findley SD. Cloning and functional characterization of a

mammalian zinc transporter that confers resistance to zinc. EMBO J.

1995;14(4):639e649.

48. Nishito Y, Kambe T. Zinc transporter 1 (ZNT1) expression on the cell surface is

elaborately controlled by cellular zinc levels. J Biol Chem. 2019;294:

15686e15697.

49. Levy M, Elkoshi N, Barber-Zucker S, et al. Zinc transporter 10 (ZnT10)dependent extrusion of cellular Mn2þ is driven by an active Ca2þ-coupled

exchange. J Biol Chem. 2019;294(15):5879e5889.

50. Udayalaxmi S, Gangula MR, Ravikiran K, Ettaiah P. Investigation of manganese

metal coordination in proteins: a comprehensive PDB analysis and quantum

mechanical study. Struct Chem. 2020;31(3):1057e1064.

51. Martin JE, Giedroc DP. Functional determinants of metal ion transport and

selectivity in paralogous cation diffusion facilitator transporters CzcD and

MntE in Streptococcus pneumoniae. J Bacteriol. 2016;198(7):1066e1076.

52. Zogzas CE, Aschner M, Mukhopadhyay S. Structural elements in the transmembrane and cytoplasmic domains of the metal transporter SLC30A10 are

required for its manganese efflux activity. J Biol Chem. 2016;291(31):

15940e15957.

53. Hu J. Toward unzipping the ZIP metal transporters: structure, evolution, and

implications on drug discovery against cancer. FEBS J. 2020;288(20):

5805e5825.

54. Aydemir TB, Cousins RJ. The multiple faces of the metal transporter ZIP14

(SLC39A14). J Nutr. 2018;148(2):174e184.

55. Taylor KM, Nicholson RI. The LZT proteins; the LIV-1 subfamily of zinc

transporters. Biochim Biophys Acta. 2003;1611(1e2):16e30.

56. Antala S, Ovchinnikov S, Kamisetty H, Baker D, Dempski RE. Computation and

functional studies provide a model for the structure of the zinc transporter

hZIP4. J Biol Chem. 2015;290(29):17796e17805.

57. Zhang T, Liu J, Fellner M, Zhang C, Sui D, Hu J. Crystal structures of a ZIP zinc

transporter reveal a binuclear metal center in the transport pathway. Sci Adv.

2017;3(8), e1700344.

58. Zhang T, Sui D, Zhang C, Cole L, Hu J. Asymmetric functions of a binuclear

metal center within the transport pathway of a human zinc transporter ZIP4.

Faseb J : official publication of the Federation of American Societies for Experimental Biology. 2020;34(1):237e247.

59. Eide DJ. Zinc transporters and the cellular trafficking of zinc. Biochim Biophys

Acta. 2006;1763(7):711e722.

60. Gupta S, Merriman C, Petzold CJ, Ralston CY, Fu D. Water molecules mediate

zinc mobility in the bacterial zinc diffusion channel ZIPB. J Biol Chem.

2019;294(36):13327e13335.

61. Bin BH, Fukada T, Hosaka T, et al. Biochemical characterization of human

ZIP13 protein: a homo-dimerized zinc transporter involved in the

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

132

spondylocheiro dysplastic Ehlers-Danlos syndrome. J Biol Chem.

2011;286(46):40255e40265.

Lin W, Chai J, Love J, Fu D. Selective electrodiffusion of zinc ions in a Zrt-, Irtlike protein, ZIPB. J Biol Chem. 2010;285(50):39013e39020.

Taylor KM, Muraina IA, Brethour D, et al. Zinc transporter ZIP10 forms a

heteromer with ZIP6 which regulates embryonic development and cell

migration. Biochem J. 2016;473(16):2531e2544.

Gaither LA, Eide DJ. Functional expression of the human hZIP2 zinc transporter. J Biol Chem. 2000;275(8):5560e5564.

Girijashanker K, He L, Soleimani M, et al. Slc39a14 gene encodes ZIP14, a

metal/bicarbonate symporter: similarities to the ZIP8 transporter. Mol Pharmacol. 2008;73(5):1413e1423.

Franz MC, Pujol-Gimenez J, Montalbetti N, et al. Reassessment of the transport

mechanism of the human zinc transporter SLC39A2. Biochemistry.

2018;57(26):3976e3986.

Aydemir TB, Liuzzi JP, McClellan S, Cousins RJ. Zinc transporter ZIP8 (SLC39A8)

and zinc influence IFN-gamma expression in activated human T cells. J Leukoc

Biol. 2009;86(2):337e348.

Guthrie GJ, Aydemir TB, Troche C, Martin AB, Chang SM, Cousins RJ. Influence

of ZIP14 (slc39A14) on intestinal zinc processing and barrier function. Am J

Physiol Gastrointest Liver Physiol. 2015;308(3):G171eG178.

Jenkitkasemwong S, Wang CY, Mackenzie B, Knutson MD. Physiologic implications of metal-ion transport by ZIP14 and ZIP8. Biometals. 2012;25(4):

643e655.

Nebert DW, Galvez-Peralta M, Hay EB, et al. ZIP14 and ZIP8 zinc/bicarbonate

symporters in Xenopus oocytes: characterization of metal uptake and inhibition. Metall. 2012;4(11):1218e1225.

Wang C-Y, Jenkitkasemwong S, Duarte S, et al. ZIP8 is an iron and zinc

transporter whose cell-surface expression is up-regulated by cellular iron

loading. J Biol Chem. 2012;287(41):34032e34043.

Kambe T, Tsuji T, Hashimoto A, Itsumura N. The physiological, biochemical,

and molecular roles of zinc transporters in zinc homeostasis and metabolism.

Physiol Rev. 2015;95(3):749e784.

Pickrell JK, Berisa T, Liu JZ, Segurel L, Tung JY, Hinds DA. Detection and

interpretation of shared genetic influences on 42 human traits. Nat Genet.

2016;48(7):709e717.

Nakata T, Creasey EA, Kadoki M, et al. A missense variant in SLC39A8 confers

risk for Crohn's disease by disrupting manganese homeostasis and intestinal

barrier integrity. Proc Natl Acad Sci U S A. 2020;117(46):28930e28938.

Sunuwar L, Frkatovic A, Sharapov S, et al. Pleiotropic ZIP8 A391T implicates

abnormal manganese homeostasis in complex human disease. JCI Insight.

2020;5(20).

Mealer RG, Jenkins BG, Chen C-Y, et al. The schizophrenia risk locus in

SLC39A8 alters brain metal transport and plasma glycosylation. Sci Rep.

2020;10(1):13162.

Matsuura W, Yamazaki T, Yamaguchi-Iwai Y, et al. SLC39A9 (ZIP9) regulates

zinc homeostasis in the secretory pathway: characterization of the ZIP subfamily I protein in vertebrate cells. Biosci Biotechnol Biochem. 2009;73(5):

1142e1148.

Lin SJ, Culotta VC. Suppression of oxidative damage by Saccharomyces cerevisiae ATX2, which encodes a manganese-trafficking protein that localizes to

Golgi-like vesicles. Mol Cell Biol. 1996;16(11):6303e6312.

Yamaji T, Hanamatsu H, Sekizuka T, et al. A CRISPR screen using subtilase

cytotoxin identifies SLC39A9 as a glycan-regulating factor. iScience. 2019;15:

407e420.

Claro da Silva T, Hiller C, Gai Z, Kullak-Ublick GA. Vitamin D3 transactivates

the zinc and manganese transporter SLC30A10 via the Vitamin D receptor.

J Steroid Biochem Mol Biol. 2016;163:77e87.

Ahmad TR, Higuchi S, Bertaggia E, et al. Bile acid composition regulates the

manganese transporter Slc30a10 in intestine. J Biol Chem. 2020;295(35):

12545e12558.

Go S, Kurita H, Yokoo K, Inden M, Kambe T, Hozumi I. Protective function of

SLC30A10 induced via PERK-ATF4 pathway against 1-methyl-4-phenylpyridinium. Biochem Biophys Res Commun. 2017;490(4):1307e1313.

Liuzzi JP, Lichten LA, Rivera S, et al. Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase

response. Proc Natl Acad Sci U S A. 2005;102(19):6843e6848.

Beker Aydemir T, Chang SM, Guthrie GJ, et al. Zinc transporter ZIP14 functions

in hepatic zinc, iron and glucose homeostasis during the innate immune

response (endotoxemia). PLoS One. 2012;7(10), e48679.

Lichten LA, Liuzzi JP, Cousins RJ. Interleukin-1beta contributes via nitric oxide

to the upregulation and functional activity of the zinc transporter Zip14

(Slc39a14) in murine hepatocytes. Am J Physiol Gastrointest Liver Physiol.

2009;296(4):G860eG867.

Homma K, Fujisawa T, Tsuburaya N, et al. SOD1 as a molecular switch for

initiating the homeostatic ER stress response under zinc deficiency. Mol Cell.

2013;52(1):75e86.

Zhao N, Zhang AS, Worthen C, Knutson MD, Enns CA. An iron-regulated and

glycosylation-dependent proteasomal degradation pathway for the plasma

membrane metal transporter ZIP14. Proc Natl Acad Sci U S A. 2014;111(25):

9175e9180.

Thompson KJ, Wessling-Resnick M. ZIP14 is degraded in response to manganese exposure. Biometals : an international journal on the role of metal ions in

biology, biochemistry, and medicine. 2019;32(6):829e843.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

H. Fujishiro and T. Kambe

Journal of Pharmacological Sciences 148 (2022) 125e133

110. Fujishiro H, Hamao S, Isawa M, Himeno S. Segment-specific and directiondependent transport of cadmium and manganese in immortalized S1, S2,

and S3 cells derived from mouse kidney proximal tubules. J Toxicol Sci.

2019;44(9):611e619.

111. Park JH, Hogrebe M, Fobker M, et al. SLC39A8 deficiency: biochemical

correction and major clinical improvement by manganese therapy. Genet

Med. 2018;20(2):259e268.

112. Carrera N, Arrojo M, Sanjuan J, et al. Association study of nonsynonymous

single nucleotide polymorphisms in schizophrenia. Biol Psychiatr. 2012;71(2):

169e177.

113. Schizophrenia Working Group of the Psychiatric Genomics C. Biological insights

from

108

schizophrenia-associated

genetic

loci.

Nature.

2014;511(7510):421e427.

114. Hertzberg L, Katsel P, Roussos P, Haroutunian V, Domany E. Integration of

gene expression and GWAS results supports involvement of calcium signaling

in Schizophrenia. Schizophr Res. 2015;164(1e3):92e99.

115. Ehret GB, Munroe PB, Rice KM, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature.

2011;478(7367):103e109.

116. Tragante V, Barnes MR, Ganesh SK, et al. Gene-centric meta-analysis in 87,736

individuals of European ancestry identifies multiple blood-pressure-related

loci. Am J Hum Genet. 2014;94(3):349e360.

117. Speliotes EK, Willer CJ, Berndt SI, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet.

2010;42(11):937e948.

118. Berndt SI, Gustafsson S, Magi R, et al. Genome-wide meta-analysis identifies

11 new loci for anthropometric traits and provides insights into genetic architecture. Nat Genet. 2013;45(5):501e512.

119. Waterworth DM, Ricketts SL, Song K, et al. Genetic variants influencing

circulating lipid levels and risk of coronary artery disease. Arterioscler Thromb

Vasc Biol. 2010;30(11):2264e2276.

120. Willer CJ, Schmidt EM, Sengupta S, et al. Discovery and refinement of loci

associated with lipid levels. Nat Genet. 2013;45(11):1274e1283.

121. Johansson A, Eriksson N, Lindholm D, et al. Genome-wide association and

Mendelian randomization study of NT-proBNP in patients with acute coronary syndrome. Hum Mol Genet. 2016;25(7):1447e1456.

122. Li D, Achkar JP, Haritunians T, et al. A pleiotropic missense variant in SLC39A8

is associated with Crohn's disease and human gut microbiome composition.

Gastroenterology. 2016;151(4):724e732.

123. Haller G, McCall K, Jenkitkasemwong S, et al. A missense variant in SLC39A8 is

associated with severe idiopathic scoliosis. Nat Commun. 2018;9(1):4171.

124. Zhang R, Witkowska K, Afonso Guerra-Assunç~

ao J, et al. A blood pressureassociated variant of the SLC39A8 gene influences cellular cadmium accumulation and toxicity. Hum Mol Genet. 2016;25(18):4117e4126.

125. Tseng WC, Reinhart V, Lanz TA, et al. Schizophrenia-associated SLC39A8

polymorphism is a loss-of-function allele altering glutamate receptor and

innate immune signaling. Transl Psychiatry. 2021;11(1):136.

126. Zhao Y, Feresin RG, Falcon-Perez JM, Salazar G. Differential targeting of

SLC30A10/ZnT10 heterodimers to endolysosomal compartments modulates

EGF-induced MEK/ERK1/2 activity. Traffic. 2016;17(3):267e288.

127. Hozumi I, Hasegawa T, Honda A, et al. Patterns of levels of biological metals in

CSF differ among neurodegenerative diseases. J Neurol Sci. 2011;303(1e2):

95e99.

128. Nolin E, Gans S, Llamas L, et al. Discovery of a ZIP7 inhibitor from a Notch

pathway screen. Nat Chem Biol. 2019;15(2):179e188.

129. Pujol-Gimenez J, Poirier M, Buhlmann S, et al. Inhibitors of human divalent

metal transporters DMT1 (SLC11A2) and ZIP8 (SLC39A8) from a GDB-17

fragment library. ChemMedChem. 2021;16(21):3306e3314.

130. Sussman D, Smith LM, Anderson ME, et al. SGN-LIV1A: a novel antibody-drug

conjugate targeting LIV-1 for the treatment of metastatic breast cancer. Mol

Cancer Therapeut. 2014;13(12):2991e3000.

131. Fujishiro H, Himeno S. Roles of zinc transporters that control the essentiality

and toxicity of manganese and cadmium. Yakugaku Zasshi. 2021;141:

695e703.

89. Begum NA, Kobayashi M, Moriwaki Y, Matsumoto M, Toyoshima K, Seya T.

Mycobacterium bovis BCG cell wall and lipopolysaccharide induce a novel

gene, BIGM103, encoding a 7-TM protein: identification of a new protein

family having Zn-transporter and Zn-metalloprotease signatures. Genomics.

2002;80(6):630e645.

90. Liu MJ, Bao S, Galvez-Peralta M, et al. ZIP8 regulates host defense through

zinc-mediated inhibition of NF-kappaB. Cell Rep. 2013;3(2):386e400.

91. Kim JH, Jeon J, Shin M, et al. Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis. Cell. 2014;156(4):730e743.

92. Melia JMP, Lin R, Xavier RJ, et al. Induction of the metal transporter ZIP8 by

interferon gamma in intestinal epithelial cells: potential role of metal dyshomeostasis in Crohn's disease. Biochem Biophys Res Commun. 2019;515(2):

325e331.

93. Aiba I, Hossain A, Kuo MT. Elevated GSH level increases cadmium resistance

through down-regulation of Sp1-dependent expression of the cadmium

transporter ZIP8. Mol Pharmacol. 2008;74(3):823e833.

94. Song J, Kim D, Lee CH, Lee MS, Chun CH, Jin EJ. MicroRNA-488 regulates zinc

transporter SLC39A8/ZIP8 during pathogenesis of osteoarthritis. J Biomed Sci.

2013;20:31.

95. Tuschl K, Meyer E, Valdivia LE, et al. Mutations in SLC39A14 disrupt manganese homeostasis and cause childhood-onset parkinsonism-dystonia. Nat

Commun. 2016;7:11601.

96. Boycott KM, Beaulieu CL, Kernohan KD, et al. Autosomal-recessive intellectual

disability with cerebellar atrophy syndrome caused by mutation of the

manganese and zinc transporter gene SLC39A8. Am J Hum Genet. 2015;97(6):

886e893.

97. Park JH, Hogrebe M, Gruneberg M, et al. SLC39A8 deficiency: a disorder of

manganese transport and glycosylation. Am J Hum Genet. 2015;97(6):

894e903.

98. Klaassen CD. Biliary excretion of manganese in rats, rabbits, and dogs. Toxicol

Appl Pharmacol. 1974;29(3):458e468.

99. Taylor CA, Hutchens S, Liu C, et al. SLC30A10 transporter in the digestive

system regulates brain manganese under basal conditions while brain

SLC30A10 protects against neurotoxicity. J Biol Chem. 2019;294(6):

1860e1876.

100. Mercadante CJ, Prajapati M, Conboy HL, et al. Manganese transporter

Slc30a10 controls physiological manganese excretion and toxicity. J Clin

Invest. 2019;129(12):5442e5461.

101. Papavasiliou PS, Miller ST, Cotzias GC. Role of liver in regulating distribution

and excretion of manganese. Am J Physiol. 1966;211(1):211e216.

102. Jenkitkasemwong S, Akinyode A, Paulus E, et al. SLC39A14 deficiency alters

manganese homeostasis and excretion resulting in brain manganese accumulation and motor deficits in mice. Proc Natl Acad Sci U S A. 2018;115(8):

E1769eE1778.

103. Xin Y, Gao H, Wang J, et al. Manganese transporter Slc39a14 deficiency

revealed its key role in maintaining manganese homeostasis in mice. Cell

Discov. 2017;3:17025.

104. Aydemir TB, Thorn TL, Ruggiero CH, Pompilus M, Febo M, Cousins RJ. Intestine-specific deletion of metal transporter Zip14 (Slc39a14) causes brain

manganese overload and locomotor defects of manganism. Am J Physiol

Gastrointest Liver Physiol. 2020;318(4):G673eG681.

105. Fujishiro H, Himeno S. New insights into the roles of ZIP8, a cadmium and

manganese transporter, and its relation to human diseases. Biol Pharm Bull.

2019;42(7):1076e1082.

106. Choi EK, Nguyen TT, Gupta N, Iwase S, Seo YA. Functional analysis of SLC39A8

mutations and their implications for manganese deficiency and mitochondrial

disorders. Sci Rep. 2018;8(1):3163.

107. Maverakis E, Fung MA, Lynch PJ, et al. Acrodermatitis enteropathica and an

overview of zinc metabolism. J Am Acad Dermatol. 2007;56(1):116e124.

108. DiDonato M, Sarkar B. Copper transport and its alterations in Menkes and

Wilson diseases. Biochim Biophys Acta. 1997;1360(1):3e16.

109. Lin W, Vann DR, Doulias PT, et al. Hepatic metal ion transporter ZIP8 regulates

manganese homeostasis and manganese-dependent enzyme activity. J Clin

Invest. 2017;127(6):2407e2417.

133

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る