リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Sophisticated expression responses of ZNT1 and MT in response to changes in the expression of ZIPs」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Sophisticated expression responses of ZNT1 and MT in response to changes in the expression of ZIPs

Nagamatsu, Shino Nishito, Yukina Yuasa, Hana Yamamoto, Nao Komori, Taiki Suzuki, Takuya Yasui, Hiroyuki Kambe, Taiho 京都大学 DOI:10.1038/s41598-022-10925-2

2022

概要

The zinc homeostatic proteins Zn transporter 1 (ZNT1) and metallothionein (MT) function in dampening increases in cytosolic zinc concentrations. Conversely, the expression of ZNT1 and MT is expected to be suppressed during decreases in cytosolic zinc concentrations. Thus, ZNT1/MT homeostatic responses are considered to be essential for maintaining cellular zinc homeostasis because cellular zinc concentrations are readily altered by changes in the expression of several Zrt-/Irt-like proteins (ZIPs) under both physiological and pathological conditions. However, this notion remains to be tested experimentally. Here, we investigated the aforementioned homeostatic process by analyzing ZNT1 and MT protein expression in response to ZIP expression. Overexpression of cell-surface-localized ZIPs, such as ZIP4 and ZIP5, increased the cellular zinc content, which caused an increase in the expression of cell-surface ZNT1 and cytosolic MT in the absence of zinc supplementation in the culture medium. By contrast, elimination of the overexpressed ZIP4 and ZIP5 resulted in decreased expression of ZNT1 but not MT, which suggests that differential regulation of ZNT1 and MT expression at the protein level underlies the homeostatic responses necessary for zinc metabolism under certain conditions. Moreover, increased expression of apically localized ZIP4 facilitated basolateral ZNT1 expression in polarized cells, which indicates that such a coordinated expression mechanism is crucial for vectorial transcellular transport. Our results provide novel insights into the physiological maintenance of cellular zinc homeostasis in response to alterations in cytosolic zinc concentrations caused by changes in the expression of ZIPs.

この論文で使われている画像

参考文献

1. Hara, T. et al. Physiological roles of zinc transporters: Molecular and genetic importance in zinc homeostasis. J. Physiol. Sci. 67,

283–301. https://​doi.​org/​10.​1007/​s12576-​017-​0521-4 (2017).

2. Kambe, T., Suzuki, E. & Komori, T. Zinc transporters—A review and a new view from biochemistry. In Zinc Signaling 2nd edn

(eds Fukada, T. & Kambe, T.) 23–56 (Springer, 2019).

3. Kambe, T., Taylor, K. M. & Fu, D. Zinc transporters and their functional integration in mammalian cells. J. Biol. Chem. 296, 100320.

https://​doi.​org/​10.​1016/j.​jbc.​2021.​100320 (2021).

4. Drozd, A., Wojewska, D., Peris-Diaz, M. D., Jakimowicz, P. & Krezel, A. Crosstalk of the structural and zinc buffering properties

of mammalian metallothionein-2. Metallomics 10, 595–613. https://​doi.​org/​10.​1039/​C7MT0​0332C (2018).

5. Krezel, A. & Maret, W. The bioinorganic chemistry of mammalian metallothioneins. Chem. Rev. 121, 14594–14648. https://​doi.​

org/​10.​1021/​acs.​chemr​ev.​1c003​71 (2021).

6. Dufner-Beattie, J. et al. The acrodermatitis enteropathica gene ZIP4 encodes a tissue-specific, zinc-regulated zinc transporter in

mice. J. Biol. Chem. 278, 33474–33481 (2003).

7. Dufner-Beattie, J., Kuo, Y. M., Gitschier, J. & Andrews, G. K. The adaptive response to dietary zinc in mice involves the differential

cellular localization and zinc regulation of the zinc transporters ZIP4 and ZIP5. J. Biol. Chem. 279, 49082–49090 (2004).

8. Weaver, B. P. & Andrews, G. K. Regulation of zinc-responsive Slc39a5 (Zip5) translation is mediated by conserved elements in the

3’-untranslated region. Biometals 25, 319–335. https://​doi.​org/​10.​1007/​s10534-​011-​9508-4 (2012).

9. Geiser, J., De Lisle, R. C. & Andrews, G. K. The zinc transporter Zip5 (Slc39a5) regulates intestinal zinc excretion and protects the

pancreas against zinc toxicity. PLoS ONE 8, e82149. https://​doi.​org/​10.​1371/​journ​al.​pone.​00821​49 (2013).

10. Fukada, T. et al. The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/

TGF-beta signaling pathways. PLoS ONE 3, e3642 (2008).

11. Huang, L., Kirschke, C. P., Zhang, Y. & Yu, Y. Y. The ZIP7 gene (Slc39a7) encodes a zinc transporter involved in zinc homeostasis

of the Golgi apparatus. J. Biol. Chem. 280, 15456–15463 (2005).

12. Taylor, K. M., Hiscox, S., Nicholson, R. I., Hogstrand, C. & Kille, P. Protein kinase CK2 triggers cytosolic zinc signaling pathways

by phosphorylation of zinc channel ZIP7. Sci. Signal 5, 11. https://​doi.​org/​10.​1126/​scisi​gnal.​20025​85 (2012).

13. Ohashi, W. et al. Zinc transporter SLC39A7/ZIP7 promotes intestinal epithelial self-renewal by resolving ER stress. PLoS Genet.

12, e1006349. https://​doi.​org/​10.​1371/​journ​al.​pgen.​10063​49 (2016).

14. Fukunaka, A. et al. Zinc transporter ZIP13 suppresses beige adipocyte biogenesis and energy expenditure by regulating C/EBPbeta expression. PLoS Genet. 13, e1006950. https://​doi.​org/​10.​1371/​journ​al.​pgen.​10069​50 (2017).

15. Kambe, T., Tsuji, T., Hashimoto, A. & Itsumura, N. The physiological, biochemical, and molecular roles of zinc transporters in

zinc homeostasis and metabolism. Physiol. Rev. 95, 749–784. https://​doi.​org/​10.​1152/​physr​ev.​00035.​2014 (2015).

16. Lichten, L. A. & Cousins, R. J. Mammalian zinc transporters: Nutritional and physiologic regulation. Annu. Rev. Nutr. 29, 153–176

(2009).

17. Palmiter, R. D. & Findley, S. D. Cloning and functional characterization of a mammalian zinc transporter that confers resistance

to zinc. Embo J. 14, 639–649 (1995).

18. Nishito, Y. & Kambe, T. Zinc transporter 1 (ZNT1) expression on the cell surface is elaborately controlled by cellular zinc levels.

J. Biol. Chem. 294, 15686–15697. https://​doi.​org/​10.​1074/​jbc.​RA119.​010227 (2019).

19. Kimura, T. & Kambe, T. The functions of metallothionein and ZIP and ZnT transporters: An overview and perspective. Int. J. Mol.

Sci. 17, 336. https://​doi.​org/​10.​3390/​ijms1​70303​36 (2016).

20. Maret, W. Zinc biochemistry: From a single zinc enzyme to a key element of life. Adv. Nutr. 4, 82–91. https://​doi.​org/​10.​3945/​an.​

112.​003038 (2013).

21. Maret, W. Zinc in cellular regulation: The nature and significance of “zinc signals”. Int. J. Mol. Sci. https://​doi.​org/​10.​3390/​ijms1​

81122​85 (2017).

22. Liuzzi, J. P. et al. Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase

response. Proc. Natl. Acad. Sci. U.S.A. 102, 6843–6848 (2005).

23. Li, M. et al. Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression. Proc. Natl. Acad. Sci. U.S.A. 104, 18636–18641 (2007).

24. Desouki, M. M., Geradts, J., Milon, B., Franklin, R. B. & Costello, L. C. hZip2 and hZip3 zinc transporters are down regulated in

human prostate adenocarcinomatous glands. Mol. Cancer 6, 37. https://​doi.​org/​10.​1186/​1476-​4598-6-​37 (2007).

25. Beker Aydemir, T. et al. Zinc transporter ZIP14 functions in hepatic zinc, iron and glucose homeostasis during the innate immune

response (endotoxemia). PLoS ONE 7, e48679. https://​doi.​org/​10.​1371/​journ​al.​pone.​00486​79 (2012).

Scientific Reports |

(2022) 12:7334 |

https://doi.org/10.1038/s41598-022-10925-2

11

Vol.:(0123456789)

www.nature.com/scientificreports/

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

26. Miyai, T. et al. Zinc transporter SLC39A10/ZIP10 facilitates antiapoptotic signaling during early B-cell development. Proc. Natl.

Acad. Sci. U.S.A. 111, 11780–11785. https://​doi.​org/​10.​1073/​pnas.​13235​49111 (2014).

27. Kim, J. H. et al. Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis. Cell 156, 730–743. https://​doi.​

org/​10.​1016/j.​cell.​2014.​01.​007 (2014).

28. Liu, M. J. et al. ZIP8 regulates host defense through zinc-mediated inhibition of NF-kappaB. Cell Rep. 3, 386–400. https://​doi.​org/​

10.​1016/j.​celrep.​2013.​01.​009 (2013).

29. Gao, H. et al. Metal transporter Slc39a10 regulates susceptibility to inflammatory stimuli by controlling macrophage survival.

Proc. Natl. Acad. Sci. U.S.A. 114, 12940–12945. https://​doi.​org/​10.​1073/​pnas.​17080​18114 (2017).

30. Wang, G. et al. Metastatic cancers promote cachexia through ZIP14 upregulation in skeletal muscle. Nat. Med. 24, 770–781. https://​

doi.​org/​10.​1038/​s41591-​018-​0054-2 (2018).

31. McMahon, R. J. & Cousins, R. J. Regulation of the zinc transporter ZnT-1 by dietary zinc. Proc. Natl. Acad. Sci. U.S.A. 95, 4841–4846

(1998).

32. Langmade, S. J., Ravindra, R., Daniels, P. J. & Andrews, G. K. The transcription factor MTF-1 mediates metal regulation of the

mouse ZnT1 gene. J. Biol. Chem. 275, 34803–34809 (2000).

33. Palmiter, R. D. Protection against zinc toxicity by metallothionein and zinc transporter 1. Proc. Natl. Acad. Sci. U.S.A. 101,

4918–4923. https://​doi.​org/​10.​1073/​pnas.​04010​22101 (2004).

34. Palmiter, R. D. The elusive function of metallothioneins. Proc. Natl. Acad. Sci. U.S.A. 95, 8428–8430 (1998).

35. Wang, F., Kim, B. E., Petris, M. J. & Eide, D. J. The mammalian Zip5 protein is a zinc transporter that localizes to the basolateral

surface of polarized cells. J. Biol. Chem. 279, 51433–51441 (2004).

36. Kim, B. E. et al. Zn2+-stimulated endocytosis of the mZIP4 zinc transporter regulates its location at the plasma membrane. J. Biol.

Chem. 279, 4523–4530 (2004).

37. Weaver, B. P., Dufner-Beattie, J., Kambe, T. & Andrews, G. K. Novel zinc-responsive post-transcriptional mechanisms reciprocally

regulate expression of the mouse Slc39a4 and Slc39a5 zinc transporters (Zip4 and Zip5). Biol. Chem. 388, 1301–1312 (2007).

38. Kambe, T. & Andrews, G. K. Novel proteolytic processing of the ectodomain of the zinc transporter ZIP4 (SLC39A4) during zinc

deficiency is inhibited by acrodermatitis enteropathica mutations. Mol. Cell Biol. 29, 129–139 (2009).

39. Chun, H. et al. An extracellular histidine-containing motif in the zinc transporter ZIP4 plays a role in zinc sensing and zinc-induced

endocytosis in mammalian cells. J. Biol. Chem. https://​doi.​org/​10.​1074/​jbc.​RA118.​005203 (2018).

40. Zhang, C., Sui, D., Zhang, T. & Hu, J. Molecular basis of zinc-dependent endocytosis of human ZIP4 transceptor. Cell Rep. 31,

107582. https://​doi.​org/​10.​1016/j.​celrep.​2020.​107582 (2020).

41. Wang, F. et al. Acrodermatitis enteropathica mutations affect transport activity, localization and zinc-responsive trafficking of the

mouse ZIP4 zinc transporter. Hum. Mol. Genet. 13, 563–571 (2004).

42. Kuliyev, E., Zhang, C., Sui, D. & Hu, J. Zinc transporter mutations linked to acrodermatitis enteropathica disrupt function and

cause mistrafficking. J. Biol. Chem. 296, 100269. https://​doi.​org/​10.​1016/j.​jbc.​2021.​100269 (2021).

43. Hashimoto, A. & Kambe, T. Mg, Zn and Cu transport proteins: A brief overview from physiological and molecular perspectives.

J. Nutr. Sci. Vitaminol. (Tokyo) 61(Suppl), S116–S118. https://​doi.​org/​10.​3177/​jnsv.​61.​S116 (2015).

44. Nishito, Y. & Kambe, T. Absorption mechanisms of iron, copper, and zinc: An overview. J. Nutr. Sci. Vitaminol. (Tokyo) 64, 1–7.

https://​doi.​org/​10.​3177/​jnsv.​64.1 (2018).

45. Maares, M., Duman, A., Keil, C., Schwerdtle, T. & Haase, H. The impact of apical and basolateral albumin on intestinal zinc resorption in the Caco-2/HT-29-MTX co-culture model. Metallomics 10, 979–991. https://​doi.​org/​10.​1039/​c8mt0​0064f (2018).

46. Maares, M. & Haase, H. A guide to human zinc absorption: General overview and recent advances of in vitro intestinal models.

Nutrients 12, 762. https://​doi.​org/​10.​3390/​nu120​30762 (2020).

47. Colvin, R. A., Holmes, W. R., Fontaine, C. P. & Maret, W. Cytosolic zinc buffering and muffling: Their role in intracellular zinc

homeostasis. Metallomics 2, 306–317. https://​doi.​org/​10.​1039/​b9266​62c (2010).

48. Hardyman, J. E. et al. Zinc sensing by metal-responsive transcription factor 1 (MTF1) controls metallothionein and ZnT1 expression to buffer the sensitivity of the transcriptome response to zinc. Metallomics 8, 337–343. https://​doi.​org/​10.​1039/​c5mt0​0305a

(2016).

49. Suhy, D. A., Simon, K. D., Linzer, D. I. & O’Halloran, T. V. Metallothionein is part of a zinc-scavenging mechanism for cell survival

under conditions of extreme zinc deprivation. J. Biol. Chem. 274, 9183–9192 (1999).

50. Miles, A. T., Hawksworth, G. M., Beattie, J. H. & Rodilla, V. Induction, regulation, degradation, and biological significance of

mammalian metallothioneins. Crit. Rev. Biochem. Mol. Biol. 35, 35–70. https://​doi.​org/​10.​1080/​10409​23009​11691​68 (2000).

51. Davis, S. R. & Cousins, R. J. Metallothionein expression in animals: A physiological perspective on function. J. Nutr. 130, 1085–1088

(2000).

52. Sutherland, D. E., Summers, K. L. & Stillman, M. J. Noncooperative metalation of metallothionein 1a and its isolated domains

with zinc. Biochemistry 51, 6690–6700. https://​doi.​org/​10.​1021/​bi300​4523 (2012).

53. Chen, S. H., Chen, L. & Russell, D. H. Metal-induced conformational changes of human metallothionein-2A: A combined theoretical and experimental study of metal-free and partially metalated intermediates. J. Am. Chem. Soc. 136, 9499–9508. https://​doi.​

org/​10.​1021/​ja504​7878 (2014).

54. Mao, X., Kim, B. E., Wang, F., Eide, D. J. & Petris, M. J. A histidine-rich cluster mediates the ubiquitination and degradation of the

human zinc transporter, hZIP4, and protects against zinc cytotoxicity. J. Biol. Chem. 282, 6992–7000 (2007).

55. Zhang, T., Sui, D., Zhang, C., Cole, L. & Hu, J. Asymmetric functions of a binuclear metal center within the transport pathway of

a human zinc transporter ZIP4. FASEB J. 34, 237–247 (2020).

56. Hashimoto, A. et al. Properties of Zip4 accumulation during zinc deficiency and its usefulness to evaluate zinc status: A study of

the effects of zinc deficiency during lactation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310, R459–R468. https://​doi.​org/​10.​

1152/​ajpre​gu.​00439.​2015 (2016).

57. Hoch, E., Levy, M., Hershfinkel, M. & Sekler, I. Elucidating the H(+) coupled Zn(2+) transport mechanism of ZIP4; implications

in Acrodermatitis enteropathica. Int. J. Mol. Sci. https://​doi.​org/​10.​3390/​ijms2​10307​34 (2020).

58. Xia, Z. et al. Slc39a5-mediated zinc homeostasis plays an essential role in venous angiogenesis in zebrafish. Open Biol. 10, 200281.

https://​doi.​org/​10.​1098/​rsob.​200281 (2020).

59. Fukada, T., Yamasaki, S., Nishida, K., Murakami, M. & Hirano, T. Zinc homeostasis and signaling in health and diseases: Zinc

signaling. J. Biol. Inorg. Chem. 16, 1123–1134. https://​doi.​org/​10.​1007/​s00775-​011-​0797-4 (2011).

60. Maryon, E. B., Molloy, S. A. & Kaplan, J. H. O-linked glycosylation at threonine 27 protects the copper transporter hCTR1 from

proteolytic cleavage in mammalian cells. J. Biol. Chem. 282, 20376–20387. https://​doi.​org/​10.​1074/​jbc.​M7018​06200 (2007).

61. Hashimoto, A. et al. Soybean extracts increase cell surface ZIP4 abundance and cellular zinc levels: A potential novel strategy to

enhance zinc absorption by ZIP4 targeting. Biochem. J. 472, 183–193. https://​doi.​org/​10.​1042/​BJ201​50862 (2015).

62. Suzuki, E. et al. Detailed analyses of the crucial functions of Zn transporter proteins in alkaline phosphatase activation. J. Biol.

Chem. 295, 5669–5684. https://​doi.​org/​10.​1074/​jbc.​RA120.​012610 (2020).

63. Fukue, K. et al. Evaluation of the roles of the cytosolic N-terminus and His-rich loop of ZNT proteins using ZNT2 and ZNT3

chimeric mutants. Sci. Rep. 8, 14084. https://​doi.​org/​10.​1038/​s41598-​018-​32372-8 (2018).

64. Naito, Y., Yoshikawa, Y., Masuda, K. & Yasui, H. Bis(hinokitiolato)zinc complex ([Zn(hkt)2]) activates Akt/protein kinase B independent of insulin signal transduction. J. Biol. Inorg. Chem. 21, 537–548. https://​doi.​org/​10.​1007/​s00775-​016-​1364-9 (2016).

Scientific Reports |

Vol:.(1234567890)

(2022) 12:7334 |

https://doi.org/10.1038/s41598-022-10925-2

12

www.nature.com/scientificreports/

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Acknowledgements

We thank Dr. Jack Kaplan (University of Illinois College of Medicine), Dr. Hirohide Saito (Kyoto University),

and Dr. Glen K. Andrews (University of Kansas Medical Center) for the gifts of MDCK FLp-In T-Rex cells,

IRES-GFP plasmid, and Zip4 and Zip5 cDNA, respectively, and Dr. Tokuji Tsuji, Yukari Matsuo, and Sayaka

Arimoto for technical assistance.

Author contributions

T.K. designed the study; S.N., Y.N., H.Y., N.Y., H.Y., and T.K. collected, analyzed, and interpreted the data; T.K.

and T.S. provided technical assistance; T.K. drafted the manuscript. All authors reviewed the manuscript.

Funding

This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas “Integrated Bio-metal

Science” (MEXT KAKENHI Grant Number JP19H05768) from the Ministry of Education, Culture, Sports,

Science, and Technology, Japan, a Grant-in-Aid for Scientific Research (B) (JSPS KAKENHI Grant Number

JP19H02883) from the Japan Society for the Promotion of Science, the Kyoto Innovative Medical Technology

Research and Development Support System, the Mitsubishi Foundation, the Kieikai Research Foundation, and

the Tojuro Iijima Foundation for Food Science and Technology (to T. K.).

Competing interests The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://​doi.​org/​

10.​1038/​s41598-​022-​10925-2.

Correspondence and requests for materials should be addressed to T.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

Scientific Reports |

(2022) 12:7334 |

https://doi.org/10.1038/s41598-022-10925-2

13

Vol.:(0123456789)

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る