リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Comparative Metabolome and Transcriptome Analyses of Susceptible Asparagus officinalis and Resistant Wild A. kiusianus Reveal Insights into Stem Blight Disease Resistance.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Comparative Metabolome and Transcriptome Analyses of Susceptible Asparagus officinalis and Resistant Wild A. kiusianus Reveal Insights into Stem Blight Disease Resistance.

Mostafa Abdelrahman Ryo Nakabayashi Tetsuya Mori Takao Ikeuchi Mitsutaka Mori Kyoko Murakami Yukio Ozaki Masaru Matsumoto Atsuko Uragami Hisashi Tsujimoto Lam Son Phan Tran Akira Kanno 東北大学 DOI:10.1093/pcp/pcaa054

2020.08.01

概要

Phomopsis asparagi is one of the most serious fungal pathogens, which causes stem blight disease in Asparagus officinalis (AO), adversely affecting its production worldwide. Recently, development of novel asparagus varieties using wild Asparagus genetic resources with natural P. asparagi resistance has become a priority in Japan due to the lack of resistant commercial AO cultivars. In the present study, comparative metabolome and transcriptome analyses of susceptible AO and resistant wild A. kiusianus (AK) 24 and 48 h post-inoculated (AOI_24 hpi, AOI_48 hpi, AKI_24 hpi and AKI_48 hpi, respectively) with P. asparagi were conducted to gain insights into metabolic and expression changes associated with the AK species. Following the infection, the resistant wild AK showed rapid metabolic changes with increased levels of flavonoids and steroidal saponins, and decreased asparagusic acid glucose ester content, compared with the susceptible AO plants. Transcriptome data revealed a total of 21l differentially expressed genes (DEGs) as the core gene set that displayed upregulation in the resistant AK versus susceptible AO after infection with P. asparagi. KEGG pathway analysis of these DEGs identified 11 significantly enriched pathways, including flavonoid biosynthesis and primary metabolite metabolism, in addition to plant signaling and defense- related pathways. In addition, comparative SNP and Indel distributions in susceptible AO and resistant AK plants were evaluated using the latest A. officinalis reference genome Aspof.V1. The data generated in this study are important resources for advancing the Asparagus breeding programs, and for investigations of genetic linkage map, phylogenetic diversity and plant defense-related genes.

この論文で使われている画像

参考文献

Abdelrahman, M., Burritt, D.J., Gupta, A., Tsujimoto, h., Tran, L.P. (2019b) Heat stress effects on source-sink relationships and metabolome dynamics in wheat. Experimental Botany 71: 543–554

Abdelrahman, M., El-Sayed, M., Sato, S., Hirakawa, H., Ito, S.I., Tanaka, K., et al. (2017c) RNA-sequencing-based transcriptome and biochemical analyses of steroidal saponin pathway in a complete set of Allium fistulosum-A. cepa monosomic addition lines. PLoS One 12: e0181784.

Abdelrahman, M., Hirata, S., Sawada, Y., Hirai, M.Y., Sato, S., Hirakawa, H., et al. (2019a) Widely targeted metabolome and transcriptome landscapes of Allium fistulosum–A. cepa chromosome addition lines revealed a flavonoid hot spot on chromosome 5A. Scientific Reports 9: 3541.

Abdelrahman, M., Jogaiah, S., Burritt, D.J., Tran, L.P. (2018) Legume genetic resources and transcriptome dynamics under abiotic stress conditions. Plant Cell Environ. doi: 10.1111/pce.13123.

Abdelrahman, M., Mitoma, M., Ikeuchi, T., Mori, M., Murakami, K.,Ozakid, Y. (2018) Differential gene expression analysis and SNP/InDel marker discovery in resistant wild Asparagus kiusianus and susceptible A. officinalis in response to Phomopsis asparagi infection. Data in Brief 21: 2117–2121.

Abdelrahman, M., Sawada, Y., Nakabayashi, R., Sato, S., Hirakawa, H., El-Sayed, M., et al. (2015) Integrating transcriptome and target metabolome variability in doubled haploids of Allium cepa for abiotic stress protection. Molecular Breeding 35: 195.

Abdelrahman, M., Suzumura, N., Mitoma, M., Matsuo, S., Ikeuchi, T., Mori, M., et al. (2017b) Comparative de novo transcriptome profiles in Asparagus officinalis and A. kiusianus during the early stage of Phomopsis asparagi infection. Scientific Reports 7: 2608.

Ashkani, S., Rafii, M.Y., Shabanimofrad, M., Miah, G., Sahebi, M., Azizi, P., et al. (2015) Molecular breeding strategy and challenges towards improvement of blast disease resistance in rice crop. Front Plant Science 6: 886.

Cheah, L-H., Horlock, C.M. (2007) Field-applied fungicides and postharvest treatments to control Asparagus diseases posing biosecurity threats to New Zealand. New Zealand. Plant Protection 60:94–98.

Chitrakar, B., Zhang, M., Adhikari, B. (2019) Asparagus (Asparagus officinalis): Processing effect on nutritional and phytochemical composition of spear and hard-stem byproducts. Trends Food Science Technology 93: 1–11.

Dawid, C., Hofmann, T. (2012) Identification of sensory-active phytochemicals in Asparagus (Asparagus officinalis L.). J Agriculture Food Chemistry 60: 11877–11888.

Di Maro, A., Pacifico, S., Fiorentino, A., Galasso, S., Gallicchio, M., Guida, V., et al. (2013) Raviscanina wild asparagus (Asparagus acutifolius L.): A nutritionally valuable crop with antioxidant and antiproliferative properties. Food Research International 53:180–188.

Die, J.V., Castro, P., Millán, T., Gil, J. (2018) Segmental and tandem duplications driving the recent NBS-LRR gene expansion in the Asparagus genome. Genes 9: 568.

Dong, T., Han, R., Yu, J., Zhu, M., Zhang, Y., Gong, Y., Li, Z. (2019) Anthocyanins accumulation and molecular analysis of correlated genes by metabolome and transcriptome in green and purple asparaguses (Asparagus officinalis, L.). Food Chemistry 217: 18–28.

Ferreyra, M.L.F., Rius, S.P., Casati, P. (2012) Flavonoids: biosynthesis, biological functions, and biotechnological applications. Frontiers Plant Science 3: 222.

Garrett, A.K., Andersen, K.F., Asche, F., Bowden, R.L., Forbes, G.A., Kulakow, P.A., et al. (2017) Resistance genes in global crop breeding networks. Phytopathology 107: 1268- 1278.

Harkess, A., Zhou, J., Xu, C., Bowers, J.E., Van der Hulst, R., Ayyampalayam, S., et al. (2017) Origin and evolution of a young Y chromosome. Nature Communications 8:1279.

Hayes, P.Y., Jahidin, A.H., Lehmann, R., Penman, K., Kitching, W., De Voss, J.J. (2008) Steroidal saponins from the roots of Asparagus racemosus. Phytochemistry 69: 796-804.

He, C., Hsiang, T., Wolyn, D.J. (2001) Activation of defense responses to Fusarium infection in Asparagus densiflorus. European J Plant Pathology 107: 473–483.

Hussain, M., Debnath, B., Qasim, M., Bamisile, B.S., Islam, W., Hameed, M.S., et al. (2019) Role of saponins in plant defense against specialist herbivores. Molecules 24: 2067.

Ito, T., Konno, I., Kubota, S., Ochiai, T., Sonoda, T., Hayashi, Y., et al. (2011) Production and characterization of interspecific hybrids between Asparagus kiusianus Makino and A. officinalis L. Euphytica 182: 285–294.

Iwato, M., Kosaza, M., Takeuchi, Y., Matsumoto, M., Inada, M., Ozaki, Y., et al. (2014) Stem blight resistance of Asparagus kiusianus and its hybrid with A. officinalis. Advances Horticultural Science 28: 202–207.

Jaramillo-Carmona, S., Rodriguez-Arcos, R, Jiménez-Araujo, A., López, S., Gil, J., Moreno, R., Guillén-Bejarano, R. (2017) Saponin profile of wild Asparagus species. Food Science 82: 638–646.

Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., Salzberg, S.L. (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology 14: R36.

Kubota, S., Konno, I., Kanno, K. (2012) Molecular phylogeny of the genus Asparagus (Asparagaceae) explains interspecific crossability between the garden asparagus (A. officinalis) and other Asparagus species. Theoretical Applied Genetics 124:345–354.

Langmead, B., Salzberg, S.L. (2012) Fast gapped-read alignment with Bowtie 2. Nature Methods 9: 357–359.

Lei, Z., Zhou, C., Ji, X., Wei, G., Huang, Y., Yu, W., et al. (2018) Transcriptome analysis reveals genes involved in flavonoid biosynthesis and accumulation in Dendrobium catenatum from different locations. Scientific Reports 8: 6373.

Li, B., Dewey, C.N. (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323.

Lu, Y., Chen, Q., Bu, Y., Luo, R., Hao, S., Zhang, J., et al. (2017) Flavonoid accumulation plays an important role in the rust resistance of malus plant leaves. Frontiers Plant Science 8: 1286.

Matsuda, F., Nakabayashi, R., Yang, Z., Okazaki, Y., Yonemaru, J-I., Ebana, K., et al. (2015) Metabolome-genome-wide association study dissects genetic architecture for generating natural variation in rice secondary metabolism. Plant J 81: 13-23.

Monteiro, F., Sebastiana, M., Pais, M., Figueiredo, A. (2013) Reference gene selection and validation for the early responses to downy mildew infection in susceptible and resistant Vitis vinifera cultivars. PLoS ONE 8:e72998.

Mostafa, A., Sudisha, J., El-Sayed, M., Ito, S., Ikeda, T., Yamauchi, N., et al. (2013) Aginoside saponin, a potent antifungal compound, and secondary metabolite analyses from Allium nigrum L. Phytochem Lett 6: 274–280.

Murphy, A.M., Otto, B., Brearley, C.A., Carr, J.P., Hanke, D.E. (2008) A role for inositol hexakisphosphate in the maintenance of basal resistance to plant pathogens. Plant J 56: 638–652.

Nakamura, Y., Afendi, F.M., Parvin, A.K., Ono, N., Tanaka, K., Hirai Morita, A., et al. (2014) KNApSAcK Metabolite Activity Database for retrieving the relationships between metabolites and biological activities. Plant Cell Physiology 55:e7.

Negi, J.S., Singh, P., Joshi, G.P., Rawat, M.S., Bisht, V.K. (2010) Chemical constituents of Asparagus. Pharmacogn Rev 4: 215–220.

Nowogórska, A., Patykowski, J. (2015) Selected reactive oxygen species and antioxidant enzymes in common bean after Pseudomonas syringae pv. phaseolicola and Botrytis cinerea infection. Acta Physiologiae Plantarum 37:1725.

Olsen, K.M., Hehn, A., Jugdé, H., Slimestad, R., Larbat, R., Bourgaud, F. (2010) Identification and characterisation of CYP75A31, a new flavonoid 3'5'-hydroxylase, isolated from Solanum lycopersicum. BMC Plant Biology 10: 21.

Powell, J.J., Carere, J., Sablok, G., Fitzgerald, T.L., Stiller, J., Colgrave, M.L., et al. (2017) Transcriptome analysis of Brachypodium during fungal pathogen infection reveals both shared and distinct defense responses with wheat. Scientific Reports 7:17212.

Ramírez, V., López, A., Mauch-Mani, B., José Gil, M., Vera, P. (2013) An extracellular subtilase switch for immune priming in Arabidopsis. PLOS Pathogens 12: e1006003.

Robinson, M.D., McCarthy, D.J., Smyth, G.K. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139– 140.

Robinson, M.D., Oshlack, A. (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology 11: R25.

Roos, J., Hopkins, R., Kvarnheden, A., Dixelius, C. (2011) The impact of global warming on plant diseases and insect vectors in Sweden. European J Plant Pathology 129: 9–19.

Sakaguchi, Y., Mine, Y., Okubo, H. and Ozaki, Y. (2008). Anthocyanin variation in Asparagus species and its inheritance Acta Horticulturae 776: 285–290.

Sharma, U., Saini, R., Bobita, Kumar, N., Singh, B. (2009). Steroidal saponins from Asparagus racemosus. Chemical Pharmaceutical Bulletin 57: 890–893.

Singh, G., Tiwari, M., Singh, S.P., Singh, S., Trivedi, P.K., Misra, P. (2016) Silencing of sterol glycosyltransferases modulates the withanolide biosynthesis and leads to compromised basal immunity of Withania somnifera. Scientific Reports 6: 25562.

Shen, Y., Xu, C-L., Xuan, W-D., Li, H-L., Liu, R-H., Xu, X-K., Chen H-S. (2011) A new furostanol saponin from Asparagus cochinchinensis. Archives Pharmacal Research 34: 1587–1591.

Sonoda, T., Uragami, A., Itoh, K., Kohmura, H., Ohwada, M., Kaji, K. (2001) Evaluation of Asparagus species and comparison between sexes in A. officinalis cultivars for resistance to stem blight. J Japanese Society Horticultural Science 70:244–250.

Sonoda, T., Uragami, A., Kaji, K. (1997) Evaluation of Asparagus officinalis cultivars for resistance to stem blight by using a novel inoculation method. Horticultural Science 32:1085–1086.

Srivastava, P.L., Shukla, S., Kalunke, R.M. (2018) Comprehensive metabolic and transcriptomic profiling of various tissues provide insights for saponin biosynthesis in the medicinally important Asparagus racemosus. Scientific Reports 8: 9098.

Taggar, G.K., Gill, R.S., Gupta, A.K., Sandhu, J.S. (2012) Fluctuations in peroxidase and catalase activities of resistant and susceptible black gram (Vigna mungo (L.) Hepper) genotypes elicited by Bemisia tabaci (Gennadius) feeding. Plant Signaling Behavior 7: 1321–1329.

Takahashi, H., Yoshida, C., Takeda, T. (2019) Sugar composition in Asparagus spears and its relationship to soil chemical properties. Journal Applied Glycoscience 66: 47–50.

Takeuchi, Y., Kakizoe, E., Yoritomi, R., Iwato, M., Kanno, A., Ikeuchi, T., et al. (2017) Features in stem blight resistance confirmed in interspecific hybrids of Asparagus officinalis L. and Asparagus kiusianus Makino. Horticult J 87: 200–205.

Thao, L.D., Dung, N.T. (2019) First report of Phomopsis asparagi causing stem blight on asparagus in Vietnam. New Disease Reports 39: 7.

Tossi, V.E., Regalado, J.J., Iannicelli, J., Laino, L.E., Burrieza, H.P., Escandón, A.S., et al. (2019) Beyond Arabidopsis: Differential UV-B response mediated by UVR8 in diverse species. Frontiers Plant Science 10: 780.

Tsugawa, H., Nakabayashi, R., Mori, T., Yamada, Y., Takahashi, M., Rai, A., et al. (2019) A cheminformatics approach to characterize metabolomes in stable-isotope-labeled organisms. Nature Methods 16: 295–298.

Vázquez-Castilla, S., Jaramillo-Carmona, S., Fuentes-Alventosa, J.M., Jiménez-Araujo, A., Rodriguez-Arcos, R., Cermeño-Sacristán, P., et al. (2013) Optimization of a method for the profiling and quantification of saponins in different green asparagus genotypes. J Agriculture Food Chemistry 61: 6250-6258.Xiao, J.F., Zhou, B., Ressom, H.W. (2012) Metabolite identification and quantitation in LC-MS/MS-based metabolomics. Trends Analytical Chemistry 32: 1–14.

Yang, Y-Q., Lan, B., Jian, Y-L., Chang, D-D., Zhang, S-L., Li, X-M. (2016) Infection process and pathogenic mechanism of Phomopsis asparagi, the Asparagus stem blight pathogen. Phytoparasitica 44:11–18.

Yano, R., Takagi, K., Takada, Y., Mukaiyama, K., Tsukamoto, C., Sayama, T., et al. (2016) Metabolic switching of astringent and beneficial triterpenoid saponins in soybean is achieved by a loss-of-function mutation in cytochrome P450 72A69. Plant J 89: 527-539.

Yi, T.G., Yeoung, Y.R., Choi, I.Y., Park, N.I. (2019) Transcriptome analysis of Asparagus officinalis reveals genes involved in the biosynthesis of rutin and protodioscin. PLoS One 14: e0219973.

Zaw, M., Naing, T.A.A., Matsumoto, M., (2017) First report of stem blight of asparagus caused by Phomopsis asparagi in Myanmar. New Disease Reports 35: 17.

Zhang, H-J., Sydara, K., Tan, G., Ma, C., Southavong, B., Soejarto, D.D., et al. (2004) Bioactive Constituents from Asparagus cochinchinensis. J Natural Product 67: 194-200.

Zhang, N., Sun, Q., Li, H., Li, X., Cao, Y., Zhang, H., et al. (2016) Melatonin improved anthocyanin accumulation by regulating gene expressions and resulted in high reactive oxygen species scavenging capacity in cabbage. Frontiers Plant Science 7: 197.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る