リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A computational search for wurtzite-structured ferroelectrics with low coercive voltages」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A computational search for wurtzite-structured ferroelectrics with low coercive voltages

清水 荘雄 濵嵜 容丞 伊藤 満 Takao Shimizu Yosuke Hamasaki Mitsuru Itoh 東京工業大学 DOI:https://doi.org/10.1063/5.0023626

2020.12.07

概要

Ferroelectricity has recently been observed in wurtzite-structured Sc-doped AlN thin films, five years after our initial prediction of ferroelec- tricity in wurtzite compounds based on first-principles calculations. The thin films exhibited a much higher coercive voltage (3 MV/cm) than that of conventional perovskite-structured ferroelectric material PbTiO3, however, making it difficult to switch the films’ polarity and limiting their practical application. To identify tetrahedral ferroelectric materials with low coercive voltages, we have carried out a wider exploration of candidate binary compounds, from halides to chalcogenides to pnictogenides, using first-principles methods. The overall trend is for polar- ization switching barriers to decrease with decreasing anion-to-cation radius ratio, with the lowest barriers found in monovalent compounds such as the copper and silver halides; e.g., CuCl is calculated to have a switching barrier of 0.17 eV/f.u. and that of AgI is 0.22 eV/f.u., values similar in magnitude to that of PbTiO3 (0.20 eV/f.u.). Applying an epitaxial tensile strain to the basal plane is also effective for lowering the potential barrier further, with barriers in both AgI and CuCl decreasing to 0.04 eV/f.u. when a 5% in-plane expansion is applied. The results suggest that tetrahedral ferroelectrics with moderate coercive voltages (below 100 kV/cm) should be achievable.

参考文献

1 A. Dal Corso, M. Posternak, R. Resta, and A. Baldereschi, Phys. Rev. B 50, 10715 (1994).

2 S. Massidda, R. Resta, M. Posternak, and A. Baldereschi, Phys. Rev. B 52, R16977 (1995).

3 F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 56, R10024 (1997).

4 Y. Uetsuji, E. Nomura, K. Koike, S. Sasa, M. Inoue, and M. Yano, J. Soc. Mater. Sci., Jpn. 58, 243 (2009).

5 F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 63, 193201 (2001).

6 S. Sawada, S. Hirotsu, H. Iwamura, and Y. Shiroishi, J. Phys. Soc. Jpn. 35, 946 (1973).

7 A. Onodera, N. Tamaki, Y. Kawamura, T. Sawada, and H. Yamashita, Jpn. J. Appl. Phys., Part 1 35, 5160 (1996).

8 M. Joseph, H. Tabata, and T. Kawai, Appl. Phys. Lett. 74, 2534 (1999).

9 H. Moriwake, A. Konishi, T. Ogawa, K. Fujimura, C. A. J. Fisher, A. Kuwabara, T. Shimizu, S. Yasui, and M. Itoh, Appl. Phys. Lett. 104, 242909 (2014).

10 A. Konishi, T. Ogawa, C. A. J. Fisher, A. Kuwabara, T. Shimizu, S. Yasui, M. Itoh, and H. Moriwake, Appl. Phys. Lett. 109, 102903 (2016).

11 C. E. Dreyer, A. Janotti, C. G. Van de Walle, and D. Vanderbilt, Phys. Rev. X 6, 021038 (2016).

12 J. W. Bennett, K. F. Garrity, K. M. Rabe, and D. Vanderbilt, Phys. Rev. Lett. 109, 167602 (2012).

13 R. Deng, K. Jiang, and D. Gall, J. Appl. Phys. 115, 013506 (2014).

14 P. M. Mayrhofer, H. Riedl, H. Euchner, M. Stöger-Pollach, P. H. Mayrhofer, A. Bittner, and U. Schmid, Acta Mater. 100, 81 (2015).

15 C. Tholander, J. Birch, F. Tasnádi, L. Hultman, J. Pališaitis, P. O. Å. Persson, J. Jensen, P. Sandström, B. Alling, and A. Žukauskaite˙, Acta Mater. 105, 199 (2016).

16 M. Uehara, H. Shigemoto, Y. Fujio, T. Nagase, Y. Aida, K. Umeda, and M. Akiyama, Appl. Phys. Lett. 111, 112901 (2017).

17 J. Maiz, P. Loxq, P. Fau, K. Fajerwerg, M. L. Kahn, G. Fleury, G. Hadziioannou, G. Guegan, J. Majimel, M. Maglione, V. Rodriguez, and E. Pavlopoulou, J. Phys. Chem. C 123, 29436 (2019).

18 M. Noor-A-Alam, O. Z. Olszewski, and M. Nolan, ACS Appl. Mater. Interfaces 11, 20482 (2019).

19 A. Samantaa, M. N. Goswamib, and P. K. Mahapatrac, Mater. Sci. Eng. B 245, 1 (2019).

20 W. Zhang and Z. Fan, Phys. Status Solidi RRL 13, 1800584 (2019).

21 N. Singh and P. Singh, RSC Adv. 10, 11382 (2020).

22 M. Atif, U. Younas, W. Khalid, Z. Ahmed, Z. Ali, and M. Nadeem, J. Mater. Sci.: Mater. Electron. 31, 5253 (2020).

23 S. Fichtner, N. Wolff, F. Lofink, L. Kienle, and B. Wagner, J. Appl. Phys. 125, 114103 (2019).

24 T. Hayashi, N. Ohji, K. Hirohara, T. Fukunaga, and H. Maiwa, Jpn. J. Appl. Phys., Part 1 32, 4092 (1993).

25 F. M. Pontes, J. H. G. Rangel, E. R. Leite, E. Longo, J. A. Varela, E. B. Araújo, and J. A. Eiras, Thin Solid Films 366, 232 (2000).

26 D. Zagorac, H. Müller, S. Ruehl, J. Zagorac, and S. Rehme, J. Appl. Crystallogr. 52, 918 (2019).

27 G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

28 G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

29 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

30 P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

31 H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

32 S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505 (1998).

33 F. Zhou, M. Cococcioni, C. A. Marianetti, D. Morgan, and G. Ceder, Phys. Rev. B 70, 235121 (2004).

34 X. Wu, D. Vanderbilt, and D. R. Hamann, Phys. Rev. B 72, 035105 (2005).

35 N. A. Spaldin, J. Solid State Chem. 195, 2 (2012).

36 N. A. Benedek and T. Birol, J. Mater. Chem. C 4, 4000 (2016).

37 J. Krug and L. Sieg, Z. Naturforsch., A 7, 369 (1952).

38 G. Burley, J. Chem. Phys. 38, 2807 (1963).

39 R. M. Hazen and L. W. Finger, J. Appl. Phys. 59, 3728 (1986).

40 W. H. Zachariasen, Z. Phys. Chem. 128, 417 (1927).

41 K. M. Nam, Y.-I. Kim, Y. Jo, S. M. Lee, B. G. Kim, R. Choi, S.-I. Choi, H. Song, and J. T. Park, J. Am. Chem. Soc. 134, 8392 (2012).

42 L. Corliss, N. Elliott, and J. Hastings, Phys. Rev. 104, 924 (1956).

43 H. Sowa and H. Ahsbahs, J. Appl. Crystallogr. 39, 169 (2006).

44 E. H. Kisi and M. M. Elcombe, Acta Crystallogr. C45, 1867 (1989).

45 I. V. Korneeva, Kristall 6, 630 (1961).

46 H. Sowa, Solid State Sci. 7, 73 (2005).

47 H. Sowa, Solid State Sci. 7, 1384 (2005).

48 K. Ohata, J. Saraie, and T. Tanaka, Jpn. J. Appl. Phys., Part 1 12, 1198 (1973).

49 J. Wang, M. Zhao, S. F. Jin, D. D. Li, J. W. Yang, W. J. Hu, and W. J. Wang, Powder Diffr. 29, 352 (2014).

50 W. Paszkowicz, S. Podsiadło, and R. Minikayev, J. Alloys Compd. 382, 100 (2004).

51 W. Paszkowicz, R. Cˇerný, and S. Krukowski, Powder Diffr. 18, 114 (2003).

52 S. A. Semiletov and M. Rozsibal, Sov. Phys. Crystallogr. 2, 281 (1957).

53 H. Schulz and K. H. Thiemann, Solid State Commun. 32, 783 (1979).

54 M. Stengel, N. A. Spaldin, and D. Vanderbilt, Nat. Phys. 5, 304 (2009).

55 M. Stengel, D. Vanderbilt, and N. A. Spaldin, Phys. Rev. B 80, 224110 (2009).

56 R. E. Cohen, Nature 358, 136 (1992).

57 R. D. Shannon, Acta Crystallogr. A32, 751 (1976).

58 J. E. Huheey, E. A. Keiter, and R. L. Keiter, Inorganic Chemistry, 4th ed. (Harper Collins, New York, USA, 1993).

59 Y. Jiang, X.-M. Meng, W.-C. Yiu, J. Liu, J.-X. Ding, C.-S. Lee, and S.-T. Lee, J. Phys. Chem. B 108, 2784 (2004).

60 S. Siol, Y. Han, J. Mangum, P. Schulz, A. M. Holder, T. R. Klein, M. F. A. M. van Hest, B. Gorman, and A. Zakutayev, J. Mater. Chem. C 6, 6297 (2018).

61 Y. H. Lai, Q. L. He, W. Y. Cheung, S. K. Lok, K. S. Wong, S. K. Ho, K. W. Tam, and I. K. Sou, Appl. Phys. Lett. 102, 171104 (2013).

62 N. Zakharov, V. A. Klyuev, T. V. Zakharova, Yu. P. Toporov, and M. R. Kiselev, Russ. J. Phys. Chem. 75, 415 (2001).

63 A. Ohtomo, K. Tamura, and K. Saikusa, Appl. Phys. Lett. 75, 2635 (1999).

参考文献をもっと見る