リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Comparative genetic analysis of the antimicrobial susceptibilities and virulence of hypermucoviscous and non-hypermucoviscous ESBL-producing Klebsiella pneumoniae in Japan」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Comparative genetic analysis of the antimicrobial susceptibilities and virulence of hypermucoviscous and non-hypermucoviscous ESBL-producing Klebsiella pneumoniae in Japan

Tanimoto, Hiroshi Shigemura, Katsumi Osawa, Kayo Kado, Mitsuki Onishi, Reo Fang, Shiuh-Bin Sung, Shian-Ying Miyara, Takayuki Fujisawa, Masato 神戸大学

2022.08.20

概要

Background:
Hypermucoviscous (HMV) Klebsiella pneumoniae produces large amounts of capsular polysaccharides, leading to high mortality. Since extended spectrum beta-lactamase (ESBL)-producing HMV K. pneumoniae strains have increased in Japan, we investigated and compared the antimicrobial susceptibilities and genetic characteristics of HMV and non-HMV ESBL-producing K. pneumoniae.

Methods:
We investigated 291 ESBL-producing K. pneumoniae collected between 2012 and 2018, and in them 54 HMV strains were identified and comparable 53 non-HMV strains were selected. Then, ESBL gene detection, plasmid replicon typing, and virulence gene detection were done by PCR amplification.

Results:
Almost all of the HMV K. pneumoniae strains possessed uge (98.1%), wabG (96.3%), rmpA (94.4%), iucA (79.6%), fimH (70.4%), iroB (70.4%), and peg-344 (70.4%). These genes were found less frequently in non-HMV strains (uge 20.8%, wabG 83.0%, rmpA 7.5%, iucA 3.8%, fimH 9.4%, iroB 5.7%, and peg-344 1.9%). K2 capsule type (40.7%) was most common in HMV strains. HMV strains showed higher resistance to cefepime (p Z 0.001) and piperacillin/tazobactam (p Z 0.005) than non-HMV strains. CTX-M-15 (75.9%, 60.4%) was the dominant ESBL type in both HMV and non-HMV strains, and the most common plasmid replicon type was IncFII (52.1%) in CTX-M-15-producing strains.

Conclusions:
We found that HMV strains had more virulence genes and showed higher resis- tance to antibiotics than non-HMV strains. The most common capsule type was K2. CTX-M-15 was the most common type of ESBL gene in both HMV and non-HMV strains in Japan. The FII plasmid might be related to the spread of CTX-M-15 among K. pneumoniae strains.

この論文で使われている画像

参考文献

1. Choby JE, Howard-Anderson J, Weiss DS. Hypervirulent Kleb- siella pneumoniae - clinical and molecular perspectives. J Intern Med 2020;287(3):283e300. https://doi.org/10. 1111/joim.13007.

2. Russo TA, Marr CM. Hypervirulent Klebsiella pneumoniae. Clin Microbiol Rev 2019;32(3):e00001-19. https://doi.org/10. 1128/CMR.00001-19.

3. Yamasaki S, Shigemura K, Osawa K, Kitagawa K, Ishii A, Kuntaman K, et al. Genetic analysis of ESBL-producing Klebsi- ella pneumoniae isolated from UTI patients in Indonesia. J Infect Chemother 2021;27(1):55e61. https://doi.org/10. 1016/j.jiac.2020.08.007.

4. Podschun R, Ullmann U. Klebsiella spp. as nosocomial patho- gens: epidemiology, taxonomy, typing methods, and pathoge- nicity factors. Clin Microbiol Rev 1998;11(4):589e603. https://doi.org/10.1128/CMR.11.4.589.

5. Schwaber MJ, Navon-Venezia S, Kaye KS, Ben-Ami R, Schwartz D, Carmeli Y. Clinical and economic impact of bacteremia with extended- spectrum-beta-lactamase- producing Enterobacteriaceae. Antimicrob Agents Chemother 2006;50(4):1257e62. https://doi.org/10.1128/AAC.50.4.1257-1262.2006.

6. Calbo E, Garau J. The changing epidemiology of hospital out- breaks due to ESBL-producing Klebsiella pneumoniae: the CTX- M-15 type consolidation. Future Microbiol 2015;10(6): 1063e75. https://doi.org/10.2217/fmb.15.22.

7. Doi Y, Iovleva A, Bonomo RA. The ecology of extended-spectrum b-lactamases (ESBLs) in the developed world. J Trav Med 2017; 24:S44e51. https://doi.org/10.1093/jtm/taw102.

8. D’Andrea MM, Arena F, Pallecchi L, Rossolini GM. CTX-M-type b- lactamases: a successful story of antibiotic resistance. Int. J. Med. Microbiol. IJMM 2013;303(6e7):305e17. https://doi.org/10.1016/j.ijmm.2013.02.008.

9. Nakamura T, Komatsu M, Yamasaki K, Fukuda S, Higuchi T, Ono T, et al. Epidemiology of Escherichia coli, Klebsiella spe- cies, and Proteus mirabilis strains producing extended- spectrum b-lactamases from clinical samples in the Kinki Re- gion of Japan. Am J Clin Pathol 2012;137(4):620e6. https://doi.org/10.1309/AJCP48PDVKWQOXEZ.

10. Liu C, Guo J. Hypervirulent Klebsiella pneumoniae (hyper- mucoviscous and aerobactin positive) infection over 6 years in the elderly in China: antimicrobial resistance patterns, mo- lecular epidemiology and risk factor. Ann Clin Microbiol Anti- microb 2019;18(1):4. https://doi.org/10.1186/s12941-018-0302-9.

11. Surgers L, Boyd A, Girard P-M, Arlet G, Decre´ D. ESBL-pro- ducing strain of hypervirulent Klebsiella pneumoniae K2, France. Emerg Infect Dis 2016;22(9):1687e8. https://doi.org/10.3201/eid2209.160681.

12. Kakuta N, Nakano R, Nakano A, Suzuki Y, Masui T, Horiuchi S, et al. Molecular characteristics of extended-spectrum b-lac- tamase-producing Klebsiella pneumoniae in Japan: predomi- nance of CTX-M-15 and emergence of hypervirulent clones. Int J Infect Dis IJID 2020;98:281e6. https://doi.org/10.1016/j. ijid.2020.06.083.

13. Carattoli A. Plasmids and the spread of resistance. Int. J. Med. Microbiol. IJMM 2013;303(6e7):298e304. https://doi.org/10. 1016/j.ijmm.2013.02.001.

14. Vila A, Cassata A, Pagella H, Amadio C, Yeh Kuo-Ming, Chang Feng-Yee, et al. Appearance of Klebsiella pneumoniae liver abscess syndrome in Argentina: case report and review of molecular mechanisms of pathogenesis. Open Microbiol J 2011; 5:107e13. https://doi.org/10.2174/1874285801105010107.

15. CLSI eClipse ultimate access - powered by edaptive technol- ogies. http://em100.edaptivedocs.net/Login.aspx#CLSI% 20M100%20ED30:2020%20APPENDIX%20I. [Accessed 1November 2021].

16. Shibata N, Kurokawa H, Doi Y, Yagi T, Yamane K, Wachino J, et al. PCR classification of CTX-M-type beta-lactamase genes identified in clinically isolated gram-negative bacilli in Japan. Antimicrob Agents Chemother 2006;50(2):791e5. https://doi.org/10.1128/AAC.50.2.791-795.2006.

17. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 2005;63(3):219e28. https://doi.org/10.1016/j.mimet.2005.03.018.

18. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Trans- plant 2013;48(3):452e8. https://doi.org/10.1038/bmt.2012. 244.

19. Namikawa H, Yamada K, Sakiyama A, Imoto W, Yamairi K, Shibata W, et al. Clinical characteristics of bacteremia caused by hypermucoviscous Klebsiella pneumoniae at a tertiary hos- pital. Diagn Microbiol Infect Dis 2019;95(1):84e8. https://doi.org/10.1016/j.diagmicrobio.2019.04.008. Epub 2019 Apr 26.

20. Yu WL, Lee MF, Tang HJ, Chang MC, Chuang YC. Low prevalence of rmpA and high tendency of rmpA mutation correspond to low virulence of extended spectrum b-lactamase-producing Klebsiella pneumoniae isolates. Virulence 2015;6(2):162e72. https://doi.org/10.1080/21505594.2015.1016703.

21. Araki K, Fukuoka K, Higuchi H, Aizawa Y, Horikoshi Y. Cefme- tazole for extended-spectrum b-lactamase-producing Entero- bacteriaceae in pediatric pyelonephritis. Pediatr Int 2019; 61(6):572e7. https://doi.org/10.1111/ped.13847.

22. Paterson DL, Bonomo RA. Extended-spectrum beta- lactamases: a clinical update. Clin Microbiol Rev 2005;18(4): 657e86. https://doi.org/10.1128/CMR.18.4.657-686.2005.

23. Miyazaki M, Yamada Y, Matsuo K, Komiya Y, Uchiyama M, Nagata N, et al. Change in the antimicrobial resistance profile of extended-spectrum b-lactamase-producing Escherichia coli. J Clin Med Res 2019;11(9):635e41. https://doi.org/10. 14740/jocmr3928.

24. Liu C, Shi J, Guo J. High prevalence of hypervirulent Klebsiella pneumoniae infection in the genetic background of elderly patients in two teaching hospitals in China. Infect Drug Resist 2018;11:1031e41. https://doi.org/10.2147/IDR.S161075.

25. Falcone M, Tiseo G, Arcari G, Leonildi A, Giordano C, Tempini S, et al. Spread of hypervirulent multidrug-resistant ST147 Klebsiella pneumoniae in patients with severe COVID-19: an observational study from Italy, 2020-21. J Antimicrob Che- mother 2022;77(4):1140e5. https://doi.org/10. 1093/jac/dkab495.

26. Banerjee T, Wangkheimayum J, Sharma S, Kumar A, Bhattacharjee A. Extensively drug-resistant hypervirulent Klebsiella pneumoniae from a series of neonatal sepsis in atertiary care hospital, India. Front Med 2021;8(8):645955. https://doi.org/10.3389/fmed.2021.645955.

27. Ahmed HA, Ibrahim EHS, Abdelhaliem E, Elariny EYT. Bio- typing, virulotyping and biofilm formation ability of ESBL-Klebsiella pneumoniae isolates from nosocomial in- fections. J Appl Microbiol 2022;132(6):4555e68. https://doi. org/10.1111/jam.15563.

28. Zhou C, Wu Q, He L, Zhang H, Xu M, Yuan B, et al. Clinical and molecular characteristics of carbapenem-resistant hyperviru- lent Klebsiella pneumoniae isolates in a tertiary hospital in Shanghai, China. Infect. Drug Res 2021;14:2697e706. https://doi.org/10.2147/IDR.S321704.

29. Yao B, Xiao X, Wang F, Zhou L, Zhang X, Zhang J. Clinical and molecular characteristics of multi-clone carbapenem-resistant hypervirulent (hypermucoviscous) Klebsiella pneumoniae iso- lates in a tertiary hospital in Beijing, China. Int J Infect Dis IJID 2015;37:107e12. https://doi.org/10.1016/j.ijid.2015. 06.023.

30. Davoudabadi S, Goudarzi H, Goudarzi M, Ardebili A, Faghihloo E, Sharahi JY, et al. Detection of extensively drug- resistant and hypervirulent Klebsiella pneumoniae ST15, ST147, ST377 and ST442 in Iran. Acta Microbiol Immunol Hung 2021. https://doi.org/10.1556/030.2021.01562.

31. Le MN, Kayama S, Wyres z KL, Yu L, Hisatsune J, Suzuki M, et al. Genomic epidemiology and temperature dependency of hypermucoviscous Klebsiella pneumoniae in Japan. Microb Genom 2022;8(5). https://doi.org/10.1099/mgen.0.000827.

32. Moghadampour M, Rezaei A, Faghri J. The emergence of blaOXA-48 and blaNDM among ESBL-producing Klebsiella pneumoniae in clinical isolates of a tertiary hospital in Iran. Acta Microbiol Immunol Hung 2018;65(3):335e44. https://doi.org/10.1556/030.65.2018.034.

33. Hansen DS, Schumacher H, Hansen F, Stegger M, Hertz FB, Schonning K, et al. Extended-spectrum b-lactamase (ESBL) in Danish clinical isolates of Escherichia coli and Klebsiella pneumoniae: prevalence, b-lactamase distribution, phy- logroups, and co-resistance. Scand J Infect Dis 2012;44(3): 174e81. https://doi.org/10.3109/00365548.2011.632642.

34. Higashino M, Murata M, Morinaga Y, Akamatsu N, Matsuda J, Takeda K, et al. Fluoroquinolone resistance in extended- spectrum b-lactamase-producing Klebsiella pneumoniae in a Japanese tertiary hospital: silent shifting to CTX-M-15- producing K. pneumoniae. J Med Microbiol 2017;66(10): 1476e82. https://doi.org/10.1099/jmm.0.000577.

35. Bian F, Yao M, Fu H, Yuan G, Wu S, Sun Y. Resistance character- istics of CTX-M type Shigella flexneri in China. Biosci Rep 2019;39(9). https://doi.org/10.1042/BSR20191741. BSR20191741.

36. Nakamura T, Komatsu M. [Susceptibility of ESBL-producing Escherichia coli and Klebsiella pneumoniae to various anti- bacterial agents]. Jpn J Antibiot 2005;58(1):1e10. PMID: 15847220.

37. Hassen B, Abbassi MS, Banlabidi S, Ruiz-Ripa L, Mama OM, Ibrahim C, et al. Genetic characterization of ESBL-producing Escherichia coli and Klebsiella pneumoniae isolated from wastewater and river water in Tunisia: predominance of CTX- M-15 and high genetic diversity. Environ Sci Pollut Res Int 2020;27(35):44368e77. https://doi.org/10.1007/s11356-020-10326-w.

38. Yang YM, Osawa K, Kitagawa K, Hosoya S, Onishi R, Ishii A, et al. Differential effects of chromosome and plasmid blaCTX-M-15 genes on antibiotic susceptibilities in extended-spectrum beta-lactamase-producing Escherichia coli isolates from pa- tients with urinary tract infection. Int J Urol 2021;38(6): 623e8. https://doi.org/10.1111/iju.14498.

39. Robin F, Bayrouthy R, Bonacorsi S, Aissa N, Bret L, Brieu N, et al. Inventory of extended-spectrum-b-lactamase-producing Enterobacteriaceae in France as assessed by a multicenter study. Antimicrob Agents Chemother 2017;61:e01911e6. https://doi.org/10.1128/AAC.01911-16.

40. Zhan L, Wang S, Guo Y, Jin Y, Duan J, Hao Z, et al. Outbreak by hypermucoviscous Klebsiella pneumoniae ST11 isolates with carbapenem resistance in a tertiary hospital in China. Front Cell Infect Microbiol 2017;7:182. https://doi.org/10. 3389/fcimb.2017.00182.

41. Vargas JM, Moreno Mochi MP, Nun˜ez JM, Ca´ceres M, Mochi S, Del Campo Moreno R, et al. Virulence factors and clinical patterns of multiple-clone hypermucoviscous KPC-2 producing K. pneumoniae. Heliyon 2019;5(6). https://doi.org/10.1016/j. heliyon.2019.e01829.

42. Harada S, Aoki K, Yamamoto S, Ishii Y, Sekiya N, Kurai H, et al. Clinical and molecular characteristics of Klebsiella pneumo- niae isolates causing bloodstream infections in Japan: occur- rence of hypervirulent infections in health care. J Clin Microbiol 2019;57(11):e01206-19. https://doi.org/10. 1128/JCM.01206-19.

43. Harada S, Ishii Y, Saga T, Aoki K, Tateda K. Molecular epide- miology of Klebsiella pneumoniae K1 and K2 isolates in Japan. Diagn Microbiol Infect Dis 2018;91(4):354e9. https://doi.org/10.1016/j.diagmicrobio.2018.03.010.

44. Russo TA, Olson R, Fang CT, Stoesser N, Miller M, MacDonald U, et al. Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumoniae from classical K. pneu- moniae. J Clin Microbiol 2018;56(9). https://doi.org/10. 1128/JCM.00776-18.

45. Guo Y, Wang S, Zhan L, Jin Y, Duan J, Han Z, et al. Microbio- logical and clinical characteristics of hypermucoviscous Kleb- siella pneumoniae isolates associated with invasive infections in China. Front Cell Infect Microbiol 2017;7:24. https://doi.org/10.3389/fcimb.2017.00024.

46. Jung SW, Chae HJ, Park YJ, Yu JK, Kim SY, Lee HK, et al. Microbiological and clinical characteristics of bacteraemia caused by the hypermucoviscosity phenotype of Klebsiella pneumoniae in Korea. Epidemiol Infect 2013;141(2):334e40. https://doi.org/10.1017/S0950268812000933.

47. Zhu J, Wang T, Chen L, Du H. Virulence factors in hypervirulent Klebsiella pneumoniae. Front Microbiol 2021;12:642484. https://doi.org/10.3389/fmicb.2021.642484.

48. Lee CR, Lee JH, Park KS, Jeon JH, Kim YB, Cha CJ, et al. Antimicrobial resistance of hypervirulent Klebsiella pneumo- niae: epidemiology, hypervirulence-associated determinants, and resistance mechanisms. Front Cell Infect Microbiol 2017; 7:483. https://doi.org/10.3389/fcimb.2017.00483.

49. Diancourt L, Passet V, Verhoef J, Grimont PA, Brisse S. Multi- locus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol 2005;43(8):4178e82. https://doi.org/10.1128/JCM.43.8.4178-4182.2005.

50. Yang F, Deng B, Liao W, Wang P, Chen P, Wei J. High rate of multiresistant Klebsiella pneumoniae from human and animal origin. Infect Drug Resist 2019;12:2729e37. https://doi.org/10.2147/IDR.S219155.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る