リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of Zn–Mg–Ca Biodegradable Dual-Phase Alloys」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of Zn–Mg–Ca Biodegradable Dual-Phase Alloys

Hagihara, Koji 大阪大学

2023.06.09

概要

Currently, Ti alloys and Co–Cr alloys with excellent mechanical properties, corrosion
resistance, and biocompatibility are widely used in the field of biomaterials as bone reinforcement implant materials [1]. However, in several cases, the surgical removal of these
implants is necessary after the affected area has healed. In such cases, the use of in-vivo
biodegradable materials that are soluble in biological environments has been considered [2].
Magnesium alloys have been the most studied candidates for such materials [3–12]; however, their high degradation rate needs to be controlled. The usage of Ca–Mg–Zn ternary
alloy is as the focus of an alternative strategy [13–25] as it contains Ca, which is an essential
element for living organisms, and Zn, which exists in trace amounts in the body. Zn is
considered an essential mineral in the human body, and it is important for the proper
functioning of numerous enzymes and for supporting immune functions, protein and DNA
synthesis, and wound healing [7,26]. Among the studies, we particularly focused on the use
of intermetallic compounds. Generally, the intermetallic compounds are used to improve
the mechanical properties of the structural materials, for example [27–32]. However, we
focused on using the intermetallic compounds to control the degradation behavior of the
alloys [14,33].
In this study, we investigated the feasibility of developing a new biodegradable “dualphase” alloy, which consists of two phases with different solubilities, in a Ca–Mg–Zn system. ...

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

Niinomi, M. Recent metallic materials for biomedical applications. Metall. Mater. Trans. A 2002, 33, 477–486. [CrossRef]

Liu, Y.; Zheng, Y.; Chen, X.-H.; Yang, J.-A.; Pan, H.; Chen, D.; Wang, L.; Zhang, J.; Zhu, D.; Wu, S.; et al. Fundamental theory of

biodegradable metals—Definition, criteria, and design. Adv. Func. Mater. 2019, 29, 1805402. [CrossRef]

Witte, F.; Fischer, J.; Nellesen, J.; Crostack, H.A.; Kaese, V.; Pisch, A.; Beckmann, F.; Windhagen, H. In vitro and in vivo corrosion

measurements of magnesium alloys. Biomaterials 2006, 27, 1013–1018. [CrossRef] [PubMed]

Staiger, M.P.; Pietak, A.M.; Huadmai, J.; Dias, G. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials

2006, 27, 1728–1734. [CrossRef] [PubMed]

Kannan, M.B.; Raman, R.K.S. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modifiedsimulated body fluid. Biomaterials 2008, 29, 2306–2314. [CrossRef]

Gu, X.; Zheng, Y.; Cheng, Y.; Zhong, S.; Xi, T. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials

2009, 30, 484–498. [CrossRef] [PubMed]

Zhang, S.; Zhang, X.; Zhao, C.; Li, J.; Song, Y.; Xie, C.; Tao, H.; Zhang, Y.; He, Y.; Jiang, Y.; et al. Research on an Mg-Zn alloy as a

degradable biomaterial. Acta Biomater. 2010, 6, 626–640. [CrossRef] [PubMed]

Zhen, Z.; Xi, T.-F.; Zheng, Y.-F. A review on in vitro corrosion performance test of biodegradable metallic materials. Trans. Nonferr.

Met. Soc. China 2013, 23, 2283–2293. [CrossRef]

Hagihara, K.; Ohkubo, M.; Yamasaki, M.; Nakano, T. Crystal-orientation-dependent corrosion behaviour of single crystals of a

pure Mg and Mg-Al and Mg-Cu solid solutions. Corr. Sci. 2016, 109, 68–85. [CrossRef]

Shuai, C.; Li, S.; Peng, S.; Feng, P.; Lai, Y.; Gao, C. Biodegradable metallic bone implants. Mater. Chem. Front. 2019, 3,

544–562. [CrossRef]

Han, H.-S.; Jun, I.; Seok, H.-K.; Lee, K.-S.; Lee, K.; Witte, F.; Mantovani, D.; Kim, Y.-C.; Glyn-Jones, S.; Edwards, J.R. Biodegradable

magnesium alloys promote angio-osteogenesis to enhance bone repair. Adv. Sci. 2020, 7, 200800. [CrossRef]

Tsakiris, V.; Tardei, C.; Clicinschi, F.M. Biodegradable Mg alloys for orthopedic implants—A review. J. Mag. Alloys 2021, 9,

1884–1905. [CrossRef]

Zberg, B.; Uggowitzer, P.J.; Löffler, L.F. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable

implants. Nat. Mater. 2009, 8, 887–891. [CrossRef] [PubMed]

Hagihara, K.; Shakudo, S.; Fujii, K.; Nakano, T. Degradation behavior of Ca-Mg-Zn intermetallic compounds for use as

biodegradable implant materials. Mater. Sci. Eng. C 2014, 44, 285–292. [CrossRef] [PubMed]

Cao, J.D.; Weber, T.; Schäublin, R.; Löffler, J.F. Equilibrium ternary intermetallic phase in the Mg-Zn-Ca system. J. Mater. Res. 2016,

31, 2147–2155. [CrossRef]

Lin, G.; Liu, D.; Chen, M.; You, C.; Li, Z.; Wang, Y.; Li, W. Preparation and characterization of biodegradable Mg-Zn-Ca/MgO

nanocomposites for biomedical applications. Mater. Charact. 2018, 144, 120–130. [CrossRef]

Babilas, R.; Bajorek, A.; Włodarczyk, P.; Łonski,

W.; Szyba, D.; Babilas, D. Effect of Au addition on the corrosion activity of

Ca-Mg-Zn bulk metallic glasses in Ringer’s solution. Mater. Chem. Phys. 2019, 226, 51–58. [CrossRef]

Metals 2023, 13, 1095

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

13 of 13

Schäublin, R.E.; Becker, M.; Cihova, M.; Gerstl, S.S.A.; Deiana, D.; Hébert, C.; Pogatscher, S.; Uggowitzer, P.J.; Löffler, J.F.

Precipitation in lean Mg-Zn-Ca alloys. Acta Mater. 2022, 239, 118223. [CrossRef]

Wang, Y.; Zhang, L.; Chen, B.; Bo, W.; Zhou, Y.; Geng, G. Effect of Zn on glass-forming capacity and corrosion resistance of

Ca-based amorphous alloys. J. Non-Cryst. Solids 2022, 591, 121713. [CrossRef]

Fu, J.; Du, W.; Liu, K.; Du, X.; Zhao, C.; Liang, H.; Mansoor, A.; Li, S.; Wang, Z. Effect of the Ca2 Mg6 Zn3 phase on the corrosion

behavior of biodegradable Mg-4.0Zn-0.2Mn-xCa alloys in Hank’s solution. Materials 2022, 15, 2079. [CrossRef]

Szyba, D.; Bajorek, A.; Babilas, D.; Temleitner, L.; Łukowiec, D.; Babilas, R. New resorbable Ca-Mg-Zn-Yb-B-Au alloys: Structural

and corrosion resistance characterization. Mater. Des. 2022, 213, 110327. [CrossRef]

Jin, C.; Liu, Z.; Yu, W.; Qin, C.; Yu, H.; Wang, Z. Biodegradable Mg-Zn-Ca-based metallic glasses. Materials 2022, 15, 2172.

[CrossRef] [PubMed]

Cai, Z.; Chen, J.; Xie, G. Mechanical properties and corrosion resistance of large-size biodegradable Ca-Mg-Zn bulk metallic

glasses fabricated via powder metallurgy. Intermetallics 2022, 148, 107633. [CrossRef]

Li, Z.H.; Sasaki, T.T.; Uedono, A.; Hono, K. Role of Zn on the rapid age-hardening in Mg-Ca-Zn alloys. Scr. Mater. 2022, 216,

114735. [CrossRef]

Li, K.; Zhou, S.; Bao, W.; Chen, J.; Li, J.; Xie, G. New biodegradable Mg-Zn-Ca bulk metallic glass composite with large plasticity

reinforced by SnZn alloy. Mater. Sci. Eng. A 2023, 873, 145045. [CrossRef]

Tapiero, H.; Tew, K.D. Trace elements in human physiology and pathology: Zinc and metallothioneins. Biomed. Pharm. 2003, 57,

399–411. [CrossRef]

Nakano, T.; Matsumoto, K.; Seno, T.; Oma, K.; Umakoshi, Y. Effect of chemical ordering on the deformation mode of Al-rich Ti-Al

single crystals. Philos. Mag. A 1996, 74, 251–268. [CrossRef]

Nakano, T.; Hagihara, K.; Seno, T.; Sumida, N.; Yamamoto, M.; Umakoshi, Y. Stress anomaly in Al-rich Ti-Al single crystals

deformed by the motion of 1/2 < 110] ordinary dislocations. Philos. Mag. Lett. 1998, 78, 385–391.

Nakano, T.; Azuma, M.; Umakoshi, Y. Microstructure and high-temperature strength in MoSi2 /NbSi2 duplex silicides.

Intermetallics 1998, 6, 715–722. [CrossRef]

Hagihara, K.; Tanaka, T.; Nakano, T.; Umakoshi, Y. Plastic deformation behavior of Ni3 (Ti0.90 Nb0.10 ) single crystals with the

nine-layered ordered rhombohedral structure. Acta Mater. 2005, 53, 5051–5059. [CrossRef]

Hagihara, K.; Nakano, T. Fracture behavior and toughness of NbSi2 -based single crystals and MoSi2 (C11b )/NbSi2 (C40) duplex

crystals with a single set of lamellae. Acta Mater. 2011, 59, 4168–4176. [CrossRef]

Hagihara, K.; Fukusumi, Y.; Yamasaki, M.; Nakano, T.; Kawamura, Y. Non-basal slip systems operative in Mg12 ZnY long-period

stacking ordered (LPSO) phase with 18R and 14H structures. Mater. Trans. 2013, 54, 693–697. [CrossRef]

Hagihara, K.; Fujii, K.; Matsugaki, A.; Nakano, T. Possibility of Mg- and Ca-based intermetallic compounds as new biodegradable

implant materials. Mater. Sci. Eng. C 2013, 33, 4101–4111. [CrossRef] [PubMed]

ASTM G31-72; Standard Practice for Laboratory Immersion Corrosion Testing of Metals. ASTM: West Conshohocken, PA,

USA, 1997.

ASTM G71-81; Standard Guide for Conducting and Evaluating Galvanic Corrosion Tests in Electrolytes. ASTM: West Conshohocken, PA, USA, 2003.

Zhang, Y.N.; Kevorkov, D.; Bridier, F.; Medraj, M. Experimental study of the Ca-Mg-Zn system using diffusion couples and key

alloys. Sci. Technol. Adv. Mater. 2011, 12, 025003. [CrossRef] [PubMed]

Zhang, Y.N.; Kevorkov, D.; Li, J.; Essadiqi, E.; Medraj, M. Determination of the solubility range and crystal structure of the

Mg-rich ternary compound in the Ca-Mg-Zn system. Intermetallics 2010, 18, 2404–2411. [CrossRef]

Chen, J.; Ai, M.; Wang, J.; Han, E.-H.; Ke, W. Formation of hydrogen blister on AZ91 magnesium alloy during cathodic charging.

Corr. Sci. 2009, 51, 1197–1200. [CrossRef]

Mansfeld, F. Area relationships in galvanic corrosion. Corrosion 1971, 27, 436–442. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る