リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Improvement of acid resistance of Zn-doped dentin by newly generated chemical bonds」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Improvement of acid resistance of Zn-doped dentin by newly generated chemical bonds

Naito, Katsuaki 大阪大学

2022.03.01

概要

Dental caries, the world’s most prevalent infectious disease, is caused by the diffusion of hydroxyl ions into tooth structures. To prevent dental caries, the application of fluoride (F) and zinc (Zn) ions to teeth surfaces are potential effective measures. In this study, The ionic influence, especially the chemical bond of F and Zn, on the acid resistance of dentin were investigated by particle induced X-ray / gamma-ray emission, X-ray diffraction, X-ray photoelectron spectroscopy and X-ray absorption spectroscopy. The results showed Zn was distributed in the limited surface layer of dentin without altering its crystal structure. From the Zn K edge extended X-ray absorption fine structure, Zn incorporated into dentin was surrounded by oxygen and demonstrated four-fold coordination. The bond length and chemical state of Zn–O in Zn doped dentin suggested newly generated Zn–O covalent bond, which may improve acid resistance of dentin. This study showed that the atomic and molecular structures, such as the molecular distances and chemical state, influenced acid resistance of teeth, emphasizing the validity of chemical state analysis for understanding properties in biomaterials.

この論文で使われている画像

参考文献

[1] R.J. Wierichs, H. Meyer-Lueckel, Systematic review on noninvasive treatment of root caries lesions, J. Dent. Res. 94 (2) (2015) 261–271, https://doi.org/ 10.1177/0022034514557330.

[2] N.B. Pitts, D.T. Zero, P.D. Marsh, K. Ekstrand, J.A. Weintraub, F. Ramos-Gomez, J. Tagami, S. Twetman, G. Tsakos, A. Ismail, Dental caries, Nat. Rev. Dis. Prim. 3 (2017) 17030, https://doi.org/10.1038/nrdp.2017.30.

[3] A. Linde, M. Goldberg, Dentinogenesis, Crit. Rev. Oral Biol. Med. 4 (5) (1993) 679–728, https://doi.org/10.1177/10454411930040050301.

[4] P. Houllé, J.C. Voegel, P. Schultz, P. Steuer, F.J.G. Cuisinier, High Resolution Electron Microscopy: Structure and growth mechanisms of human dentin crystals, J. Dent. Res. 76 (1997) 895–904, https://doi.org/10.1177/00220345970760041101.

[5] P. Bodier-Houllé, P. Steuer, J.-C. Voegel, F.J.G. Cuisinier, First experimental evidence for human dentine crystal formation involving conversion of octacalcium phosphate to hydroxyapatite, Acta Crystallogr. Sect. D Biol. Crystallogr. 54 (6) (1998) 1377–1381.

[6] R.A. Young, S. Spooner, Neutron diffraction studies of human tooth enamel, Arch. Oral Biol. 15 (1) (1970) 47–63, https://doi.org/10.1016/0003-9969(70) 90144-5.

[7] N.L. Derise, S.J. Ritchey, Mineral composition of normal human enamel and dentin and the relation of composition to dental caries: II. Microminerals, J. Dent. Res. 53 (4) (1974) 853–858, https://doi.org/10.1177/00220345740530041601.

[8] R. Zapanta LeGeros, Apatites in biological systems, Prog. Cryst. Growth Charact. 4 (1-2) (1981) 1–45.

[9] H.P. Whelton, A.J. Spencer, L.G. Do, A.J. Rugg-Gunn, Fluoride revolution and dental caries: Evolution of policies for global use, J. Dent. Res. 98 (2019) 837– 846, https://doi.org/10.1177/0022034519843495.

[10] W. Marcenes, N.J. Kassebaum, E. Bernabé, A. Flaxman, M. Naghavi, A. Lopez, C.J. L. Murray, Global burden of oral conditions in 1990–2010: A systematic analysis, J. Dent. Res. 92 (2013) 592–597, https://doi.org/10.1177/0022034513490168.

[11] C. González-Cabezas, C.E. Fernández, Recent advances in remineralization therapies for caries lesions, Adv. Dent. Res. 29 (1) (2018) 55–59, https://doi. org/10.1177/0022034517740124.

[12] A. Lussi, T.S. Carvalho, The future of fluorides and other protective agents in erosion prevention, Caries Res. 49 (Suppl. 1) (2015) 18–29, https://doi.org/ 10.1159/000380886.

[13] L.M. Gordon, M.J. Cohen, K.W. MacRenaris, J.D. Pasteris, T. Seda, D. Joester, Amorphous intergranular phases control the properties of rodent tooth enamel, Science (80-.) 347 (6223) (2015) 746–750.

[14] F. Lippert, A.T. Hara, Strontium and caries: A long and complicated relationship, Caries Res. 47 (2013) 34–49, https://doi.org/10.1159/000343008.

[15] H.P. Wiesmann, T. Tkotz, U. Joos, K. Zierold, U. Stratmann, T. Szuwart, U. Plate, H.J. Höhling, Magnesium in newly formed mineral of rat incisor, J. Bone Miner. Res. 12 (1997) 380–383, https://doi.org/10.1359/jbmr.1997.12.3.380.

[16] J. Xue, A.V. Zavgorodniy, B.J. Kennedy, M.V. Swain, W. Li, X-ray microdiffraction, TEM characterization and texture analysis of human dentin and enamel, J. Microsc. 251 (2) (2013) 144–153, https://doi.org/10.1111/ jmi.12053.

[17] J.C. Voegel, R.M. Frank, Ultrastructural study of apatite crystal dissolution in human dentine and bone, J. Biol. Buccale. 5 (1977) 181–194.

[18] C. Besnard, R.A. Harper, E. Salvati, T.E.J. Moxham, L. Romano Brandt, G. Landini, R.M. Shelton, A.M. Korsunsky, Analysis of in vitro demineralised human enamel using multi-scale correlative optical and scanning electron microscopy, and high-resolution synchrotron wide-angle X-ray scattering, Mater. Des. 206 (2021) 109739, https://doi.org/10.1016/ j.matdes.2021.109739.

[19] H. Yamamoto, Y. Iwami, T. Unezaki, Y. Tomii, S. Ebisu, Fluoride uptake in human teeth from fluoride-releasing restorative material in vivo and in vitro: Two-dimensional mapping by EPMA-WDX, Caries Res. 35 (2001) 111–115, https://doi.org/10.1159/000047441.

[20] K. Yagi, H. Yamamoto, R. Uemura, Y. Matsuda, K. Okuyama, T. Ishimoto, T. Nakano, M. Hayashi, Use of PIXE/PIGE for sequential Ca and F measurements in root carious model, Sci. Rep. 7 (2017) 13450, https://doi.org/10.1038/s41598-017-14041-4.

[21] H. Yamamoto, M. Nomachi, K. Yasuda, Y. Iwami, S. Ebisu, N. Yamamoto, T. Sakai, T. Kamiya, Fluorine mapping of teeth treated with fluorine-releasing compound using PIGE, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 210 (2003) 388–394. 10.1016/S0168-583X(03)01039-5.

[22] S.O.F. Dababneh, K. Toukan, I. Khubeis, Excitation function of the nuclear reaction 19F(p, ac)16O in the proton energy range 0.3–3.0 MeV, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 83 (3) (1993) 319–324, https://doi.org/10.1016/0168-583X(93)95849-Z.

[23] T. Sakai, T. Kamiya, M. Oikawa, T. Sato, A. Tanaka, K. Ishii, JAERI Takasaki in-air micro-PIXE system for various applications, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 190 (1-4) (2002) 271–275, https:// doi.org/10.1016/S0168-583X(02)00469-X.

[24] K. Matsunaga, H. Murata, T. Mizoguchi, A. Nakahira, Atsushi Nakahira, Mechanism of incorporation of zinc into hydroxyapatite, Acta Biomater. 6(6) (2010) 2289–2293, https://doi.org/10.1016/j.actbio.2009.11.029.

[25] Y. Kuwahara, Y. Yoshimura, K. Haematsu, H. Yamashita, Mild deoxygenation of sulfoxides over plasmonic molybdenum oxide hybrid with dramatic activity enhancement under visible light, J. Am. Chem. Soc. 140 (29) (2018) 9203–9210, https://doi.org/10.1021/jacs.8b0471110.1021/jacs.8b04711.s001.

[26] D.A. Shirley, High-resolution x-ray photoemission spectrum of the valence bands of gold, Phys. Rev. B. 5 (12) (1972) 4709–4714, https://doi.org/10.1103/ PhysRevB.5.4709.

[27] B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron Radiat. 12 (2005) 537– 541, https://doi.org/10.1107/S0909049505012719.

[28] J.J. Rehr, R.C. Albers, Theoretical approaches to x-ray absorption fine structure, Rev. Mod. Phys. 72 (3) (2000) 621–654, https://doi.org/10.1103/ RevModPhys.72.621.

[29] K. Matsunaga, First-principles study of substitutional magnesium and zinc in hydroxyapatite and octacalcium phosphate, J. Chem. Phys. 128 (2008), https:// doi.org/10.1063/1.2940337.

[30] R Core Team, R: A language and environment for statistical computing, 2019. https://www.r-project.org/.

[31] H. Wickham, ggplot2: Elegant graphics for data Analysis, Springer-Verlag, New York, 2016. https://ggplot2.tidyverse.org.

[32] E.L. Lakomaa, I. Rytömaa, Mineral composition of enamel and dentin of primary and permanent teeth in Finland, Scand. J. Dent. Res. 85 (1977) 89–95, https://doi.org/10.1111/j.1600-0722.1977.tb00537.x.

[33] N. Charadram, C. Austin, P. Trimby, M. Simonian, M.V. Swain, N. Hunter, Structural analysis of reactionary dentin formed in response to polymicrobial invasion, J. Struct. Biol. 181 (3) (2013) 207–222.

[34] E. Morgunova, A. Tuuttila, U. Bergmann, M. Isupov, Y. Lindqvist, G. Schneider, K. Tryggvason, Structure of Human Pro-Matrix Metalloproteinase-2: Activation Mechanism Revealed, Science (80-.) 284 (5420) (1999)1667–1670.

[35] R.M. Sulyanto, M. Kang, S. Srirangapatanam, M. Berger, F. Candamo, Y. Wang, J. R. Dickson, M.W. Ng, S.P. Ho, Biomineralization of dental tissues treated with silver diamine fluoride, J. Dent. Res. 100 (10) (2021) 1099–1108, https://doi. org/10.1177/00220345211026838.

[36] C.T. Coffey, M.J. Ingram, A.M. Bjorndal, Analysis of human dentinal fluid, Oral Surgery, Oral Med. Oral Pathol. 30 (6) (1970) 835–837, https://doi.org/ 10.1016/0030-4220(70)90348-8.

[37] F. Miyaji, Y. Kono, Y. Suyama, Formation and structure of zinc-substituted calcium hydroxyapatite, Mater. Res. Bull. 40 (2) (2005) 209–220, https://doi. org/10.1016/j.materresbull.2004.10.020.

[38] F. Ren, R. Xin, X. Ge, Y. Leng, Characterization and structural analysis of zinc- substituted hydroxyapatites, Acta Biomater. 5 (8) (2009) 3141–3149, https:// doi.org/10.1016/j.actbio.2009.04.014.

[39] A. Bigi, E. Foresti, M. Gandolfi, M. Gazzano, N. Roveri, Isomorphous substitutions in b-tricalcium phosphate: The different effects of zinc and strontium, J. Inorg. Biochem. 66 (1997) 259–265, https://doi.org/10.1016/ S0162-0134(96)00219-X.

[40] X. Zhao, Y. Zhu, Z. Zhu, Y. Liang, Y. Niu, J. Lin, Characterization, dissolution, and solubility of Zn-substituted hydroxylapatites [(ZnxCa1—x)5(PO4)3OH] at 25°C, J. Chem. 2017 (2017) 4619159, https://doi.org/10.1155/2017/4619159.

[41] M.M.J. van Rijt, S.W. Nooteboom, A. van der Weijden, W.L. Noorduin, G. de With, Stability-limited ion-exchange of calcium with zinc in biomimetic hydroxyapatite, Mater. Des. 207 (2021), https://doi.org/10.1016/j.matdes.2021.109846 109846.

[42] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A. 32 (5) (1976) 751–767, https://doi.org/10.1107/S0567739476001551.

[43] D.A. McKeown, I.S. Muller, A.C. Buechele, I.L. Pegg, Local environment of Zn in zirconium borosilicate glasses determined by X-ray absorption spectroscopy, J. Non. Cryst. Solids. 261 (1-3) (2000) 155–162, https://doi.org/10.1016/S0022-3093(99)00588-8.

[44] J.A. Biscardi, E. Iglesia, Reaction pathways and rate-determining steps in reactions of alkanes on H-ZSM5 and Zn/H-ZSM5 catalysts, J. Catal. 182 (1) (1999) 117–128, https://doi.org/10.1006/jcat.1998.2312.

[45] Y. Tang, H.F. Chappell, M.T. Dove, R.J. Reeder, Y.J. Lee, Zinc incorporation into hydroxylapatite, Biomaterials 30 (15) (2009) 2864–2872, https://doi.org/ 10.1016/j.biomaterials.2009.01.043.

[46] T. Takatsuka, J. Hirano, H. Matsumoto, T. Honma, X-Ray absorption fine structure analysis of the local environment of zinc in dentine treated with zinc compounds, Eur. J. Oral Sci. 113 (2) (2005) 180–183, https://doi.org/10.1111/ j.1600-0722.2005.00194.x.

[47] B. Ravel, S.D. Kelly, The difficult chore of measuring coordination by EXAFS, AIP Conf. Proc. 882 (2007) 150–152, https://doi.org/10.1063/1.2644458.

[48] A.D. Wilson, S. Crisp, Ionomer cements, Br. Polym. J. 7 (5) (1975) 279–296, https://doi.org/10.1002/pi.4980070502.

[49] S.G. Griffin, R.G. Hill, Influence of glass composition on the properties of glass polyalkenoate cements. Part I: Influence of aluminium to silicon ratio, Biomaterials 20 (1999) 1579–1586, https://doi.org/10.1016/S0142-9612(99)00058-7.

[50] L.M. Gordon, L. Tran, D. Joester, Atom probe tomography of apatites and bone- type mineralized tissues, ACS Nano 6 (12) (2012) 10667–10675, https://doi. org/10.1021/nn3049957.

[51] F.J.G. Cuisinier, P. Steuer, J.-C. Voegel, F. Apfelbaum, I. Mayer, Structural analyses of carbonate-containing apatite samples related to mineralized tissues, J. Mater. Sci. Mater. Med. 6 (2) (1995) 85–89, https://doi.org/ 10.1007/BF00120413.

[52] I. Mayer, J.D.B. Featherstone, Dissolution studies of Zn-containing carbonated hydroxyapatites, J. Cryst. Growth. 219 (1-2) (2000) 98–101, https://doi.org/ 10.1016/S0022-0248(00)00608-4.

[53] S. Bentov, B.A. Palmer, B. Bar-On, Y. Shelef, E.D. Aflalo, A. Sagi, Reinforcement of bio-apatite by zinc substitution in the incisor tooth of a prawn, Acta Biomater. 120 (2021) 116–123, https://doi.org/10.1016/j.actbio.2020.07.039.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る