リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Nondestructive thickness measurement of silica scale using cathodoluminescence」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Nondestructive thickness measurement of silica scale using cathodoluminescence

Susumu Imashuku Wataru Hashimoto Kazuaki Wagatsuma 東北大学 DOI:10.1016/j.saa.2020.119022

2020.10.03

概要

The knowledge of the composition, morphology, and thickness of surface protective scales, such as SiO2 and Al2O3, is important to control the performance of heat-resistant alloys operated at high temperatures above 1000 °C. Cathodoluminescence (CL) analysis is one of the most promising methods to acquire such information nondestructively. Unlike Al scales formed on Fe-20%Si alloy, Si, and MoSi2 to present a method for measuring the thickness of SiO2 scale on silica-forming materials from their CL spectra. A linear calibration curve was obtained from the intensity of the CL peak at 445 nm which originated from the intrinsic defects in SiO scale thickness, regardless of the type of base materials. These results indicated that the thickness of the SiO2 scale formed on silica-forming alloys can be determined by acquiring their CL spectra. Therefore, CL analysis has the potential to be employed as a novel analytical method to control the performance of silica-forming alloys.

この論文で使われている画像

参考文献

[1] H. Hindam, D.P. Whittle, Microstructure, adhesion and growth kinetics of protective scales on metals and alloys, Oxid. Met., 18 (1982) 245-284.

[2] A.S. Khanna, Introduction to high temperature oxidation and corrosion, ASM International, Materials Park, 2002.

[3] C. Houngniou, S. Chevalier, J.P. Larpin, High-Temperature-Oxidation Behavior of Iron–Aluminide Diffusion Coatings, Oxid. Met., 65 (2006) 409-439.

[4] G.Y. Lai, High-Temperature Corrosion and Materials Applications, ASM International, Ohio, 2007.

[5] D.J. Young, High Temperature Oxidation and Corrosion of Metals, Elsevier, Amsterdam, 2016.

[6] C.A.C. Sequeira, High temperature corrosion: fundamentals and engineering, John Wiley and Sons, Inc, Hoboken, 2019.

[7] P. Kofstand, High Temperature Corrosion, Elsevier, London, 1988.

[8] F.H. Stott, G.C. Wood, J. Stringer, The influence of alloying elements on the development and maintenance of protective scales, Oxid. Met., 44 (1995) 113-145.

[9] S. Chevalier, Mechanisms and Kinetics of Oxidation, in: R.A. Cottis, M.J. Graham, R. Lindsay, S.B. Lyon, J.A. Richardson, J.D. Scantlebury, F.H. Stott (Eds.) Shreir's Corrosion, Elsevier, Amsterdam, 2010, pp. 132-152.

[10] M.J. Graham, R.J. Hussey, Analytical techniques in high temperature corrosion, Oxid. Met., 44 (1995) 339-374.

[11] S. Imashuku, K. Wagatsuma, Non-destructive evaluation of alumina scale on heat-resistant steels using cathodoluminescence and X-ray-excited optical luminescence, Corros. Sci., 154 (2019) 226-230.

[12] S. Imashuku, K. Wagatsuma, X-ray-excited optical luminescence imaging for on-site analysis of alumina scale, Oxid. Met., 94 (2020) 27-36.

[13] S. Imashuku, K. Wagatsuma, Cathodoluminescence Analysis for the Nondestructive Evaluation of Silica Scale on an Iron-Based Alloy, Oxid. Met., 93 (2020) 175-182.

[14] P.Y. Hou, Oxidation of Metals and Alloys, in: R.A. Cottis, M.J. Graham, R. Lindsay, S.B. Lyon, J.A. Richardson, J.D. Scantlebury, F.H. Stott (Eds.) Shreir's Corrosion, Elsevier, Amsterdam, 2010.

[15] S. Imashuku, K. Ono, K. Wagatsuma, Rapid phase mapping in heat-treated powder mixture of alumina and magnesia utilizing cathodoluminescence, X-Ray Spectrom., 46 (2017) 131-135.

[16] S. Imashuku, K. Ono, R. Shishido, S. Suzuki, K. Wagatsuma, Cathodoluminescence analysis for rapid identification of alumina and MgAl2O4 spinel inclusions in steels, Mater. Charact., 131 (2017) 210-216.

[17] S. Imashuku, K. Ono, K. Wagatsuma, X-Ray excited optical luminescence and portable electron probe microanalyzer- cathodoluminescence (EPMA-CL) analyzers for on-line and on-site analysis of nonmetallic inclusions in steel, Microsc. Microanal., 23 (2017) 1143-1149.

[18] S. Imashuku, K. Wagatsuma, Rapid identification of calcium aluminate inclusions in steels using cathodoluminescence analysis, Metall. Mater. Trans. B, 49B (2018) 2868-2874.

[19] S. Imashuku, K. Wagatsuma, Cathodoluminescence analysis of nonmetallic inclusions of nitrides in steel, Surf. Interface Anal., 51 (2019) 31-34.

[20] H. Tsuneda, S. Imashuku, K. Wagatsuma, Detection of free-lime in steelmaking sag by cathodoluminescence method, Tetsu To Hagane-J. Iron Steel Inst. Jpn., 105 (2019) 30-37.

[21] S. Imashuku, K. Wagatsuma, Simple identification of Al2O3 and MgO·Al2O3 spinel inclusions in steel using X-ray-excited optical luminescence, X-Ray Spectrom., 48 (2019) 522-526.

[22] S. Imashuku, K. Wagatsuma, Cathodoluminescence analysis of nonmetallic inclusions in steel deoxidized and desulfurized by rare- earth metals (La, Ce, Nd), Metall. Mater. Trans. B, 51 (2020) 79-84.

[23] S. Imashuku, H. Tsuneda, K. Wagatsuma, Rapid and simple identification of free magnesia in steelmaking slag used for road construction using cathodoluminescence, Metall. Mater. Trans. B, 51 (2020) 28-34.

[24] S. Imashuku, H. Tsuneda, K. Wagatsuma, Effects of divalent-cation iron and manganese oxides on the luminescence of free lime and free magnesia, Spectrochim. Acta, Part A, 229 (2020) 117952.

[25] S. Imashuku, K. Wagatsuma, Rapid identification of rare earth element bearing minerals in ores by cathodoluminescence method, Miner. Eng., 151 (2020) 106317.

[26] S. Imashuku, K. Wagatsuma, Determination of Area Fraction of Free Lime in Steelmaking Slag Using Cathodoluminescence and X-ray Excited Optical Luminescence, Metall. Mater. Trans. B, 51 (2020) 2003-2011.

[27] S. Imashuku, K. Wagatsuma, X-ray-excited optical luminescence imaging for on-site identification of xenotime, J. Geochem. Explor., (2020) submitted.

[28] T. Adachi, G.H. Meier, Oxidation of iron-silicon alloys, Oxid. Met., 27 (1987) 347-366.

[29] E. Fitzer, Oxidation of Molybdenum Disilicade, in: R.E.T.a.M. McNallan (Ed.) Corrosion and corrosive degradation of ceramics, American Ceramic Society, Westerville, Ohio, 1990, pp. 19-41.

[30] M.A.S. Kalceff, M.R. Phillips, A.R. Moon, W. Kalceff, Cathodoluminescence Microcharacterisation of Silicon Dioxide Polymorphs, in: M. Pagel, V. Barbin, P. Blanc, D. Ohnenstetter (Eds.) Cathodoluminscence in Geosciences, Springer, Berlin, 2000, pp. 193-224.

[31] J. Götze, M. Plötze, D. Habermann, Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz - a review, Mineral. Petrol., 71 (2001) 225-250.

[32] M.A. Kalceff, M.R. Phillips, Cathodoluminescence microcharacterization of the defect structure of quartz, Phys. Rev. B, 52 (1995) 3122-3134.

[33] S.K. Milonjic, L.S. Cerovic, D.M. Cokesa, S. Zec, The influence of cationic impurities in silica on its crystallization and point of zero charge, J. Colloid Interface Sci., 309 (2007) 155-159.

[34] S. Haastrup, D. Yu, Y. Yue, Impact of surface impurity on phase transitions in amorphous micro silica, J. Non·Cryst. Solids, 450 (2016) 42-47.

[35] M. Kayama, H. Nishido, K. Ninagawa, Effect of impurities on cathodoluminescence of tridymite and cristobalite, J. Mineral. Petrol. Sci., 104 (2009) 401-406.

[36] A.N. Trukhin, K. Smits, J. Jansons, A. Kuzmin, Luminescence of polymorphous SiO2, Radiat. Meas., 90 (2016) 6-13.

[37] E. Zvyagintseva, A. Korneva, N. Boroznovskaya, T. Nebera, X-ray diffraction study and luminescence of agates of Southern Siberia, IOP Conf. Ser.: Earth Environ. Sci., 319 (2019).

[38] O. Jaoul, F. Bejina, F. Elie, F. Abel, Silicon self-diffusion in quartz, Phys. Rev. Lett., 74 (1995) 2038-2041.

[39] B.G. Yacobi, D.B. Holt, in: Cathodoluminescence Microscopy of Inorganic Solids, Plenum Press, New York, 1990, pp. 151-155.

[40] L.N. Yefimenko, Y.P. Nechiporenko, V.N. Pavlov, Fiz. Metal Metalloved, 16 (1963) 931.

[41] J. Cook, A. Khan, E. Lee, R. Mahapatra, Oxidation of MoSi2-based composites, Mater. Sci. Eng., A, 155 (1992) 183-198.

[42] K. Kurokawa, H. Matsuoka, T. Nagai, Tran. Mat. Res. Soc. Jpn., 14A (1994) 255.

参考文献をもっと見る