リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Radio Absorption in the Nightside Ionosphere of Mars During Solar Energetic Particle Events」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Radio Absorption in the Nightside Ionosphere of Mars During Solar Energetic Particle Events

Harada, Y. Nakamura, Y. Sánchez‐Cano, B. Lester, M. Terada, N. Leblanc, F. 京都大学 DOI:10.1029/2023sw003755

2023.12

概要

Characterization, understanding, and prediction of the Martian radio environment are of increasing importance to the forthcoming human exploration of Mars. Here we investigate 3–5 MHz radio absorption in the nightside ionosphere of Mars caused by enhanced ionization at <100 km altitudes during solar energetic particle (SEP) events. We conduct a quantitative analysis of radio absorption and SEP flux data that have been accumulated by two spacecraft currently orbiting Mars, thereby demonstrating that radio absorption is clearly correlated with SEP fluxes. A comparison of the observations with radio absorption properties predicted by a numerical model indicates that the relative temporal changes, radio frequency dependence, and SEP energy dependence of the observed radio absorption are in agreement with the model prediction. Meanwhile, the model systematically overestimates the radio absorption in the ionosphere by a factor of 3.7. We explore several sources of uncertainty, including the electron-neutral collision frequency, absolute sensitivity of the SEP instrument, and limited transport of SEPs to the atmosphere, but the ultimate cause of the systematic discrepancy between the measured and modeled radio absorption is yet to be identified. Further efforts should be put into the development of a comprehensive and observationally validated model of radio absorption in the Martian ionosphere to assist the future crew and spacecraft activities on the surface of Mars.

この論文で使われている画像

参考文献

Ehresmann, B., Hassler, D. M., Zeitlin, C., Guo, J., Wimmer-Schweingruber, R. F., Matthiä, D., et al. (2018). Energetic particle radiation environment observed by rad on the surface of mars during the September 2017 event. Geophysical Research Letters, 45(11), 5305–5311. https://

doi.org/10.1029/2018GL077801

Espley, J. R., Farrell, W. M., Brain, D. A., Morgan, D. D., Cantor, B., Plaut, J. J., et al. (2007). Absorption of MARSIS radar signals: Solar energetic particles and the daytime ionosphere. Geophysical Research Letters, 34(9), L09101. https://doi.org/10.1029/2006GL028829

Fowler, C. M., Andersson, L., Shaver, S. R., Thayer, J. P., Huba, J. D., Lillis, R., et al. (2017). MAVEN observations of ionospheric irregularities

at Mars. Geophysical Research Letters, 44(21), 10845–10854. https://doi.org/10.1002/2017GL075189

Fowler, C. M., Bonnell, J. W., Huba, J. D., Andersson, L., Espley, J., Benna, M., & Ergun, R. E. (2019). The statistical characteristics of

small-scale ionospheric irregularities observed in the Martian ionosphere. Journal of Geophysical Research: Space Physics, 124(7), 5874–

5893. https://doi.org/10.1029/2019JA026677

Fowler, C. M., Bonnell, J. W., Xu, S., Benna, M., Elrod, M., McFadden, J., et al. (2020). First detection of kilometer-scale density irregularities in

the Martian ionosphere. Geophysical Research Letters, 47(22), e2020GL090906. https://doi.org/10.1029/2020GL090906

Grima, C., Kofman, W., Herique, A., Orosei, R., & Seu, R. (2012). Quantitative analysis of mars surface radar reflectivity at 20 MHz. Icarus,

220(1), 84–99. https://doi.org/10.1016/j.icarus.2012.04.017

Gurnett, D., Huff, R., Morgan, D., Persoon, A., Averkamp, T., Kirchner, D., et al. (2008). An overview of radar soundings of the Martian ionosphere from the Mars Express spacecraft. Advances in Space Research, 41(9), 1335–1346. https://doi.org/10.1016/j.asr.2007.01.062

Harada, Y., Gurnett, D. A., Kopf, A. J., Halekas, J. S., & Ruhunusiri, S. (2018). Ionospheric irregularities at Mars probed by MARSIS topside

sounding. Journal of Geophysical Research: Space Physics, 123(1), 1018–1030. https://doi.org/10.1002/2017JA024913

Harada, Y., Gurnett, D. A., Kopf, A. J., Halekas, J. S., Ruhunusiri, S., DiBraccio, G. A., et al. (2018). MARSIS observations of the Martian nightside

ionosphere during the September 2017 solar event. Geophysical Research Letters, 45(16), 7960–7967. https://doi.org/10.1002/2018GL077622

Haynes, M. S. (2020). Surface and subsurface radar equations for radar sounders. Annals of Glaciology, 61(81), 135–142. https://doi.org/10.1017/

aog.2020.16

Hunsucker, R. D. (1991). Radio techniques for probing the terrestrial ionosphere (Vol. 22). Springer Berlin Heidelberg. https://doi.

org/10.1007/978-3-642-76257-4

Itikawa, Y. (1978). Momentum-transfer cross sections for electron collisions with atoms and molecules: Revision and supplement, 1977. Atomic

Data and Nuclear Data Tables, 21(1), 69–75. https://doi.org/10.1016/0092-640X(78)90004-9

Jolitz, R. D., Dong, C. F., Rahmati, A., Brain, D. A., Lee, C. O., Lillis, R. J., et al. (2021). Test particle model predictions of SEP electron transport

and precipitation at mars. Journal of Geophysical Research: Space Physics, 126(8), e2021JA029132. https://doi.org/10.1029/2021JA029132

Jordan, R., Picardi, G., Plaut, J., Wheeler, K., Kirchner, D., Safaeinili, A., et al. (2009). The Mars express MARSIS sounder instrument. Planetary

and Space Science, 57(14–15), 1975–1986. https://doi.org/10.1016/j.pss.2009.09.016

Kataoka, R. (2022). Chapter 3 - Technological vulnerability and statistics. In R. Kataoka (Ed.), Extreme space weather (pp. 65–92). Elsevier.

https://doi.org/10.1016/B978-0-12-822537-0.00002-8

Larson, D. E., Lillis, R. J., Lee, C. O., Dunn, P. A., Hatch, K., Robinson, M., et al. (2015). The MAVEN solar energetic particle investigation.

Space Science Reviews, 195(1), 153–172. https://doi.org/10.1007/s11214-015-0218-z

Lee, C. O., Hara, T., Halekas, J. S., Thiemann, E., Chamberlin, P., Eparvier, F., et al. (2017). MAVEN observations of the solar cycle 24 space

weather conditions at Mars. Journal of Geophysical Research: Space Physics, 122(3), 2768–2794. https://doi.org/10.1002/2016JA023495

Lee, C. O., Jakosky, B. M., Luhmann, J. G., Brain, D. A., Mays, M. L., Hassler, D. M., et al. (2018). Observations and impacts of the 10 September 2017 solar events at Mars: An overview and synthesis of the initial results. Geophysical Research Letters, 45(17), 8871–8885. https://doi.

org/10.1029/2018GL079162

Lester, M., Sanchez-Cano, B., Potts, D., Lillis, R., Cartacci, M., Bernardini, F., et al. (2022). The impact of energetic particles on the Martian

ionosphere during a full solar cycle of radar observations: Radar blackouts. Journal of Geophysical Research: Space Physics, 127(2),

e2021JA029535. https://doi.org/10.1029/2021JA029535

Lillis, R. J., Lee, C. O., Larson, D., Luhmann, J. G., Halekas, J. S., Connerney, J. E. P., & Jakosky, B. M. (2016). Shadowing and anisotropy

of solar energetic ions at Mars measured by MAVEN during the March 2015 solar storm. Journal of Geophysical Research: Space Physics,

121(4), 2818–2829. https://doi.org/10.1002/2015JA022327

Mayyasi, M., Narvaez, C., Benna, M., Elrod, M., & Mahaffy, P. (2019). Ion-neutral coupling in the upper atmosphere of mars: A dominant driver

of topside ionospheric structure. Journal of Geophysical Research: Space Physics, 124(5), 3786–3798. https://doi.org/10.1029/2019JA026481

Melnik, O., & Parrot, M. (1999). Propagation of electromagnetic waves through the Martian ionosphere. Journal of Geophysical Research,

104(A6), 12705–12714. https://doi.org/10.1029/1999JA900100

Mendillo, M., Pi, X., Smith, S., Martinis, C., Wilson, J., & Hinson, D. (2004). Ionospheric effects upon a satellite navigation system at Mars.

Radio Science, 39(2), 1–11. https://doi.org/10.1029/2003RS002933

Millour, E., Forget, F., Spiga, A., Vals, M., Zakharov, V., Montabone, L., et al. (2018). The mars climate database (version 5.3) from mars express

to exomars scientific workshop. ESA-ESAC.

Morgan, D. D., Diéval, C., Gurnett, D. A., Duru, F., Dubinin, E. M., Fränz, M., et al. (2014). Effects of a strong ICME on the Martian ionosphere as detected by Mars express and Mars Odyssey. Journal of Geophysical Research: Space Physics, 119(7), 5891–5908. https://doi.

org/10.1002/2013JA019522

Morgan, D. D., Gurnett, D. A., Kirchner, D. L., Winningham, J. D., Frahm, R. A., Brain, D. A., et al. (2010). Radar absorption due to a corotating

interaction region encounter with Mars detected by MARSIS. Icarus, 206(1), 95–103. https://doi.org/10.1016/j.icarus.2009.03.008

Mouginot, J., Pommerol, A., Kofman, W., Beck, P., Schmitt, B., Herique, A., et al. (2010). The 3–5 MHz global reflectivity map of mars

by MARSIS/Mars express: Implications for the current inventory of subsurface H2O. Icarus, 210(2), 612–625. https://doi.org/10.1016/j.

icarus.2010.07.003

Nakamura, Y., Leblanc, F., Terada, N., Hiruba, S., Murata, I., Nakagawa, H., et al. (2023). Numerical prediction of changes in atmospheric chemical compositions during a solar energetic particle event on mars. Journal of Geophysical Research: Space Physics, 128(12), e2022JA031250.

https://doi.org/10.1029/2022JA031250

Nakamura, Y., Terada, N., Koyama, S., Yoshida, T., Karyu, H., Terada, K., et al. (2023). Photochemical and radiation transport model for extensive use (PROTEUS). Earth Planets and Space, 75(1), 140. https://doi.org/10.1186/s40623-023-01881-w

Nakamura, Y., Terada, N., Leblanc, F., Rahmati, A., Nakagawa, H., Sakai, S., et al. (2022). Modeling of diffuse auroral emission at mars: Contribution of MeV protons. Journal of Geophysical Research: Space Physics, 127(1), e2021JA029914. https://doi.org/10.1029/2021JA029914

15 of 16

15427390, 2023, 12, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023SW003755 by Cochrane Japan, Wiley Online Library on [21/02/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Space Weather

10.1029/2023SW003755

Němec, F., Morgan, D. D., Diéval, C., & Gurnett, D. A. (2015). Intensity of nightside MARSIS AIS surface reflections and implications for

low-altitude ionospheric densities. Journal of Geophysical Research: Space Physics, 120(4), 3226–3239. https://doi.org/10.1002/2014JA020888

Němec, F., Morgan, D. D., Diéval, C., Gurnett, D. A., & Futaana, Y. (2014). Enhanced ionization of the Martian nightside ionosphere during solar

energetic particle events. Geophysical Research Letters, 41(3), 793–798. https://doi.org/10.1002/2013GL058895

Němec, F., Morgan, D. D., Gurnett, D. A., & Duru, F. (2010). Nightside ionosphere of Mars: Radar soundings by the Mars express spacecraft.

Journal of Geophysical Research, 115(E12), E12009. https://doi.org/10.1029/2010JE003663

Nielsen, E., Morgan, D., Kirchner, D., Plaut, J., & Picardi, G. (2007). Absorption and reflection of radio waves in the Martian ionosphere. Planetary and Space Science, 55(7–8), 864–870. https://doi.org/10.1016/j.pss.2006.10.005

Rahmati, A., Cravens, T. E., Nagy, A. F., Fox, J. L., Bougher, S. W., Lillis, R. J., et al. (2014). Pickup ion measurements by MAVEN: A diagnostic of photochemical oxygen escape from Mars. Geophysical Research Letters, 41(14), 4812–4818. https://doi.org/10.1002/2014GL060289

Rahmati, A., Larson, D. E., Cravens, T. E., Lillis, R. J., Dunn, P. A., Halekas, J. S., et al. (2015). MAVEN insights into oxygen pickup ions at

Mars. Geophysical Research Letters, 42(21), 8870–8876. https://doi.org/10.1002/2015GL065262

Rahmati, A., Larson, D. E., Cravens, T. E., Lillis, R. J., Halekas, J. S., McFadden, J. P., et al. (2017). MAVEN measured oxygen and hydrogen

pickup ions: Probing the Martian exosphere and neutral escape. Journal of Geophysical Research: Space Physics, 122(3), 3689–3706. https://

doi.org/10.1002/2016JA023371

Ramstad, R., Holmström, M., Futaana, Y., Lee, C. O., Rahmati, A., Dunn, P., et al. (2018). The September 2017 SEP event in context with the

current solar cycle: Mars express ASPERA-3/IMA and MAVEN/SEP observations. Geophysical Research Letters, 45(15), 7306–7311. https://

doi.org/10.1029/2018GL077842

Reames, D. V. (2013). The two sources of solar energetic particles. Space Science Reviews, 175(1), 53–92. https://doi.org/10.1007/

s11214-013-9958-9

Rishbeth, H., & Garriott, O. K. (1969). Introduction to ionospheric physics. Academic Press.

Sánchez-Cano, B., Blelly, P.-L., Lester, M., Witasse, O., Cartacci, M., Orosei, R., et al. (2019). Origin of the extended Mars radar blackout of

September 2017. Journal of Geophysical Research: Space Physics, 124(0), 4556–4568. https://doi.org/10.1029/2018JA026403

Schneider, N. M., Deighan, J. I., Jain, S. K., Stiepen, A., Stewart, A. I. F., Larson, D., et al. (2015). Discovery of diffuse aurora on Mars. Science,

350(6261), aad0313. https://doi.org/10.1126/science.aad0313

Schneider, N. M., Jain, S. K., Deighan, J., Nasr, C. R., Brain, D. A., Larson, D., et al. (2018). Global aurora on Mars during the September 2017

Space weather event. Geophysical Research Letters, 45(15), 7391–7398. https://doi.org/10.1029/2018GL077772

Schunk, R. W., & Nagy, A. F. (1980). Ionospheres of the terrestrial planets. Reviews of Geophysics, 18(4), 813–852. https://doi.org/10.1029/

RG018i004p00813

Silver, S. (1984). Microwave antenna theory and design (No. (19)). Iet.

Whitten, R. C., & Poppoff, I. G. (1971). Fundamentals of aeronomy. John Wiley and Sons, Inc.

Witasse, O., Nouvel, J.-F., Lebreton, J.-P., & Kofman, W. (2001). Hf radio wave attenuation due to a meteoric layer in the atmosphere of Mars.

Geophysical Research Letters, 28(15), 3039–3042. https://doi.org/10.1029/2001GL013164

Withers, P. (2011). Attenuation of radio signals by the ionosphere of Mars: Theoretical development and application to MARSIS observations.

Radio Science, 46(2), RS2004. https://doi.org/10.1029/2010RS004450

Withers, P., Felici, M., Mendillo, M., Vogt, M. F., Barbinis, E., Kahan, D., et al. (2022). Observations of high densities at low altitudes in the

nightside ionosphere of mars by the maven radio occultation science experiment (ROSE). Journal of Geophysical Research: Space Physics,

127(11), e2022JA030737. https://doi.org/10.1029/2022JA030737

Yoshida, T., Aoki, S., Ueno, Y., Terada, N., Nakamura, Y., Shiobara, K., et al. (2023). Strong depletion of 13C in CO induced by photolysis of CO2

in the Martian atmosphere, calculated by a photochemical model. The Planetary Science Journal, 4(3), 53. https://doi.org/10.3847/PSJ/acc030

Zeitlin, C., Hassler, D. M., Guo, J., Ehresmann, B., Wimmer-Schweingruber, R. F., Rafkin, S. C. R., et al. (2018). Analysis of the radiation hazard

observed by rad on the surface of mars during the September 2017 solar particle event. Geophysical Research Letters, 45(12), 5845–5851.

https://doi.org/10.1029/2018GL077760

HARADA ET AL.

16 of 16

15427390, 2023, 12, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023SW003755 by Cochrane Japan, Wiley Online Library on [21/02/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Space Weather

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る