リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Interplanetary Scintillation Observations of Solar-Wind Disturbances During Cycles 23 and 24」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Interplanetary Scintillation Observations of Solar-Wind Disturbances During Cycles 23 and 24

Tokumaru, Munetoshi Fujiki, Ken’ichi Iwai, Kazumasa 名古屋大学

2023.02.13

概要

The solar wind, which is a turbulent plasma stream emanating from the Sun
at a supersonic speed, changes drastically over a wide range of spatial and
temporal scales to drive space weather (e.g., Tsurutani, Lakhina, and Hajra,
2020). Accurate information on the solar wind is important for predicting space
weather; however, so far, no reliable models have yet been established to determine solar wind conditions from observations of the Sun. Therefore, continuous
monitoring of the solar wind through either direct or indirect methods is required
to predict space weather. In situ observations at the L1 point provide information
on the upstream solar wind of the Earth, enabling space weather predictions
approximately 1 h in advance (Zwickl et al., 1998). Interplanetary scintillation
(IPS) observations for compact radio sources serve as a useful indirect method
for sensing the solar wind from the ground (Hewish, Scott, and Wills, 1964,
Coles, 1978) and can provide information on the upstream solar wind one or a
few days in advance (e.g., Gapper et al., 1982).
Observations with the Cambridge 81-MHz array first demonstrated the utility
of IPS for space weather predictions (Gapper et al., 1982). In these observations,
IPS data were collected for approximately 900 sources per a day, and used to
calculate the disturbance factor, termed the g-value, which represents the relative
variation of the solar wind density fluctuation level (∆Ne ) along the line of sight
for the region where wave scattering is weak. Solar wind disturbances between
the Sun and Earth orbit were clearly revealed from a series of all-sky maps of the
g-values produced on a daily basis. The utility of IPS, particularly for studying
coronal mass ejections (CMEs), has been further explored through subsequent
observations in India, Russia, and Japan (Manoharan, 1997, 2006, 2010, Chashei
et al., 2016. Tokumaru et al., 2000b, 2003, 2005, 2006a,b, 2007, 2019). CMEs
are regarded as one of primary targets in space weather predictions, because fast
CMEs associated with the southward component of the interplanetary magnetic
field (IMF) are likely to cause intense geomagnetic storms (Tsurutani, Lakhina,
and Hajra, 2020). When the line of sight for an IPS source intersects the compression region driven by a CME, the g-value increases above unity. The magnitude
of increased g-values and their distribution in the sky map indicate the ∆Ne level
and global structure of CME, respectively. Increased g-values detected from IPS
observations have been analyzed to determine the three-dimensional properties
and propagation dynamics of CMEs in the solar wind (e.g., Tokumaru et al.,
2003, 2006a,b, 2007). However, not all CMEs are necessarily associated with the
compression region; that is, slow CMEs are unlikely to drive the compression
region in the solar wind, and g-value measurements preferentially detect fast
CMEs. The g-value measurements are also useful for observing corotating plasma
streams (Houminer, 1971; Tappin, Hewish, and Gapper, 1984). Although g-value
data are useful for detecting and tracking solar wind disturbances for specific
events, few studies have examined the long-term properties of solar wind disturbances using g-values. This is primarily attributed to a lack of freely available
g-value data that covers a long period, e.g., more than one solar cycle. ...

参考文献

Allen, R.C., Ho, G.C., Mason, G.M., Li, G., Jian, L.K., Vines, S.K., and, ...: 2021, Geophys.

Res. Lett. 48, e91376. doi:10.1029/2020GL091376.

Ananthakrishnan, S., Coles, W.A., and Kaufman, J.J.: 1980, Journal of Geophysical Research

85, 6025. doi:10.1029/JA085iA11p06025.

Besliu-Ionescu, D., Maris Muntean, G., and Dobrica, V.: 2022, Solar Physics 297, 65.

doi:10.1007/s11207-022-01998-3.

Chashei, I.V., Tyul’bashev, S.A., Shishov, V.I., and Subaev, I.A.: 2016, Space Weather 14,

682. doi:10.1002/2016SW001455.

Coles, W.A.: 1978, Space Science Reviews 21, 411. doi:10.1007/BF00173067.

Fujiki, K., Tokumaru, M., Hayashi, K., Satonaka, D., and Hakamada, K.: 2016, The

Astrophysical Journal 827, L41. doi:10.3847/2041-8205/827/2/L41.

Gapper, G.R., Hewish, A., Purvis, A., and Duffett-Smith, P.J.: 1982, Nature 296, 633.

doi:10.1038/296633a0.

Gerontidou, M., Mavromichalaki, H., and Daglis, T.: 2018, Solar Physics 293, 131.

doi:10.1007/s11207-018-1348-8.

Gosling,

J.T.

and

Pizzo,

V.J.:

1999,

Space

Science

Reviews

89,

21.

doi:10.1023/A:1005291711900.

Grandin, M., Aikio, A.T., and Kozlovsky, A.: 2019, Journal of Geophysical Research (Space

Physics) 124, 3871. doi:10.1029/2018JA026396.

Hapgood, M. and Harrison, R.: 1994, Geophys. Res. Lett. 21, 637. doi:10.1029/94GL00372.

Harrison, R.A., Hapgood, M.A., Moore, V., and Lucek, E.A.: 1992, Annales Geophysicae 10,

519.

Hewish, A., Scott, P.F., and Wills, D.: 1964, Nature 203, 1214. doi:10.1038/2031214a0.

Hewish, A., Tappin, S.J., and Gapper, G.R.: 1985, Nature 314, 137. doi:10.1038/314137a0.

Houminer, Z.: 1971, Nature Physical Science 231, 165. doi:10.1038/physci231165a0.

Homuiner, Z.: 1973, Planetary and Space Science 21, 1617. doi:10.1016/0032-0633(73)90153-0.

Jackson, B.V., Hick, P.P., Buffington, A., Bisi, M.M., Clover, J.M., Tokumaru, M., Kojima,

M., and, Fujiki, K.: 2011, Journal of Atmospheric and Solar-Terrestrial Physics 73, 1214.

doi:10.1016/j.jastp.2010.10.007.

Jackson, B.V., Tokumaru, M., Fallows, R.A., Bisi, M.M., Fujiki, K., Chashei, I., Tyul’bashev,

S., Chang, O., Barnes, D., Buffington, A., Cota, L., and Bracamontes, M.: 2022, Advances

in Space Research, in press. doi:10.1016/j.asr.2022.06.029.

Jian, L.K., Russell, C.T., Luhmann, J.G., Skoug, R.M., and Steinberg, J.T.: 2008, Solar Physics

249, 85. doi:10.1007/s11207-008-9161-4.

Kojima, M. and Kakinuma, T.: 1990, Space Science Reviews 53, 173. doi:10.1007/BF00212754.

Kojima, M., Tokumaru, M., Fujiki, K., Hayashi, K., and Jackson, B.V.: 2007, Astronomical

and Astrophysical Transactions 26, 467. doi:10.1080/10556790701596200.

Lucek, E.A. and Rodger, A.S.: 1995, Annales Geophysicae 13, 1237.

Lucek, E.A., Clark, T.D.G., and Moore, V.: 1996, Annales Geophysicae 14, 139.

doi:10.1007/s00585-996-0139-y.

Manoharan, P.K.: 1997, Geophys. Res. Lett. 24, 2623. doi:10.1029/97GL02664.

Manoharan, P.K.: 2006, Solar Physics 235, 345. doi:10.1007/s11207-006-0100-y.

Manoharan, P.K.: 2010, Solar Physics 265, 137. doi:10.1007/s11207-010-9593-5.

Richardson, I.G. and Cane, H.V.: 2010, Solar Physics 264, 189. doi:10.1007/s11207-010-9568-6.

Richardson, I.G.: 2018, Living Reviews in Solar Physics 15, 1. doi:10.1007/s41116-017-0011-z.

Sugiura, M.: 1964, Annual International Geophysical Year, Pergamon, New York 35, 9.

Tappin, S.J., Hewish, A., and Gapper, G.R.: 1984, Planetary and Space Science 32, 1273.

doi:10.1016/0032-0633(84)90070-9.

Tappin, S.J.: 1986, Planetary and Space Science 34, 93. doi:10.1016/0032-0633(86)90106-6.

Tokumaru, M., Kojima, M., Ishida, Y., Yokobe, A., and Ohmi, T.: 2000, Advances in Space

Research 25, 1943. doi:10.1016/S0273-1177(99)00630-4.

Tokumaru, M., Kojima, M., Fujiki, K., and Yokobe, A.: 2000, Journal of Geophysical Research

105, 10435. doi:10.1029/2000JA900001.

Tokumaru, M., Kojima, M., Fujiki, K., Yamashita, M., and Yokobe, A.: 2003, Journal of

Geophysical Research (Space Physics) 108, 1220. doi:10.1029/2002JA009574.

Tokumaru, M., Kojima, M., Fujiki, K., Yamashita, M., and Baba, D.: 2005, Journal of

Geophysical Research (Space Physics) 110, A01109. doi:10.1029/2004JA010656.

Tokumaru, M., Yamashita, M., Kojima, M., Fujiki, K., and Nakagawa, T.: 2006, Advances in

Space Research 38, 547. doi:10.1016/j.asr.2005.07.011.

SOLA: IPS_index_v3.tex; 2 February 2023; 17:02; p. 15

Tokumaru et al.

Tokumaru, M., Kojima, M., Fujiki, K., and Yamashita, M.: 2006, Nonlinear Processes in

Geophysics 13, 329. doi:10.5194/npg-13-329-2006.

Tokumaru, M., Kojima, M., Fujiki, K., Yamashita, M., and Jackson, B.V.: 2007, Journal of

Geophysical Research (Space Physics) 112, A05106. doi:10.1029/2006JA012043.

Tokumaru, M., Kojima, M., Fujiki, K., Maruyama, K., Maruyama, Y., Ito, H., et al.: 2011,

Radio Sci. 46, RS0F02. doi:10.1029/2011RS004694.

Tokumaru, M.: 2013, Proceedings of the Japan Academy, Series B 89, 67.

doi:10.2183/pjab.89.67.

Tokumaru, M., Fujiki, K., Iwai, K., Tyul’bashev, S., and Chashei, I.: 2019, Solar Physics 294,

87. doi:10.1007/s11207-019-1487-6.

Tokumaru, M., Fujiki, K., Kojima, M., and Iwai, K.: 2021, The Astrophysical Journal 922,

73. doi:10.3847/1538-4357/ac1862.

Tsurutani, B.T., Goldstein, B.E., Gonzales, W.D., and Tang, F.: 1988, Planetary and Space

Science 36, 205. doi:10.1016/0032-0633(88)90056-6.

Tsurutani, B.T., Lakhina, G.S., and Hajra, R.: 2020, Nonlinear Processes in Geophysics 27,

75. doi:10.5194/npg-27-75-2020.

Young, A.T.: 1971, The Astrophysical Journal 168, 543. doi:10.1086/151108.

Zwickl, R.D., Doggett, K.A., Sahm, S., Barrett, W.P., Grubb, R.N., Detman, T.R., and, ...:

1998, Space Science Reviews 86, 633. doi:10.1023/A:1005044300738.

SOLA: IPS_index_v3.tex; 2 February 2023; 17:02; p. 16

Solar Wind Disturbances during Cycles 23 and 24

(a)

Figure 1. Histograms of g-values derived from ISEE IPS observations for (a) 1997―-2009

and (b) 2010-―2019. Dot-dash and dotted lines indicates the average and ±1σ values in log

space.

SOLA: IPS_index_v3.tex; 2 February 2023; 17:02; p. 17

Tokumaru et al.

(a)

(b)

Figure 2. Mean number of g-values available per day for the periods of (a) 1997―-2009 and

(b) 2010-―2019. Vertical bars on each data point indicate ±1σ of the mean.

SOLA: IPS_index_v3.tex; 2 February 2023; 17:02; p. 18

Solar Wind Disturbances during Cycles 23 and 24

Figure 3. Temporal variation of (from bottom to top) I50 , Ihi , Gave , and solar wind density

N for 2003.

SOLA: IPS_index_v3.tex; 2 February 2023; 17:02; p. 19

Tokumaru et al.

(a)

(b)

Figure 4. Cross correlation coefficients between (left to right) I50 -N , Ihi -N , and Gave -N for

(a) 1997―-2009 and (b) 2010-―2019, plotted as a function of the time lag to the IPS indices.

Stripes drawn by solid (dotted) lines denote p values less (greater) than 0.05. Vertical bars on

each strip indicate the standard error of the correlation coefficient.

SOLA: IPS_index_v3.tex; 2 February 2023; 17:02; p. 20

Solar Wind Disturbances during Cycles 23 and 24

(a)

(b)

Figure 5. Temporal variation of maximum correlation coefficients between the IPS indices

and N (symbols), and the monthly-averaged sunspot numbers SSN (solid line) for (a) 1997-―

2009 and (b) 2010–2019. Squares, circles, and triangles denote I50 , Ihi , and Gave , respectively.

Vertical bars on the data points indicate the standard error of the correlation coefficient.

SOLA: IPS_index_v3.tex; 2 February 2023; 17:02; p. 21

Tokumaru et al.

(a)

(b)

Figure 6. Cross correlation coefficients between (left to right) I50 -V , Ihi -V , and Gave -V for

(a) 1997-―2009 and (b) 2010-―2019 plotted as a function of the time lag to the IPS indices.

Stripes drawn by solid (dotted) lines denote p values less (greater) than 0.05. Vertical bars on

each strip indicate the standard error of the correlation coefficient.

SOLA: IPS_index_v3.tex; 2 February 2023; 17:02; p. 22

Solar Wind Disturbances during Cycles 23 and 24

(a)

(b)

Figure 7. Cross correlation coefficients between (left to right) I50 -dV /dt, Ihi -dV /dt, and

Gave -dV /dt for (a) 1997-―2009 and (b) 2010-―2019, plotted as a function of the time lag to

the IPS indices. Stripes drawn by solid (dotted) lines denote p values less (greater) than 0.05.

Vertical bars on each strip indicate the standard error of the correlation coefficient.

SOLA: IPS_index_v3.tex; 2 February 2023; 17:02; p. 23

Tokumaru et al.

(a)

(b)

Figure 8. Temporal variation of maximum correlation coefficients between the IPS indices

and dV /dt (symbols), and the monthly-averaged sunspot numbers SSN (solid line) for (a)

1997-―2009 and (b) 2010—2019. Squares, circles, and triangles denote I50 , Ihi , and Gave ,

respectively. Vertical bars on the data points indicate the standard error of the correlation

coefficient.

SOLA: IPS_index_v3.tex; 2 February 2023; 17:02; p. 24

Solar Wind Disturbances during Cycles 23 and 24

(a)

(b)

Figure 9. Cross correlation coefficients between (left to right) I50 -Dst, Ihi -Dst, and Gave -Dst

for (a) 1997―-2009 and (b) 2010-―2019, plotted as a function of the time lag to the IPS indices.

Stripes drawn by solid (dotted) lines denote p values less (greater) than 0.05. Vertical bars on

each strip indicate the standard error of the correlation coefficient.

SOLA: IPS_index_v3.tex; 2 February 2023; 17:02; p. 25

Tokumaru et al.

(a)

(b)

Figure 10. Temporal variation of the maximum amplitudes of the negative correlations

between IPS indices and Dst (symbols) and monthly-averaged sunspot numbers SSN (solid

line) for (a) 1997―-2009 and (b) 2010—2019. Squares, circles, and triangles denote I50 , Ihi ,

and Gave , respectively. Vertical bars on the data points indicate the standard error of the

correlation coefficient.

SOLA: IPS_index_v3.tex; 2 February 2023; 17:02; p. 26

Solar Wind Disturbances during Cycles 23 and 24

(a)

(b)

Figure 11. Temporal variation of the occurrence rates of solar wind disturbances determined

by IPS indices (symbols) and monthly-averaged sunspot numbers SSN (solid line) for (a)

1997–2009 and (b) 2010–2019: squares, circles and triangles correspond to the data of I50 , Ihi ,

and Gave , respectively.

SOLA: IPS_index_v3.tex; 2 February 2023; 17:02; p. 27

Tokumaru et al.

(a)

(b)

Figure 12. Wavelet power spectra of I50 for (a) 2004 and (b) 2013. Dashed line in each plot

corresponds to the cone of influence. Origin of the X-axis corresponds to a start date of IPS

observations for a given year.

SOLA: IPS_index_v3.tex; 2 February 2023; 17:02; p. 28

Solar Wind Disturbances during Cycles 23 and 24

Figure 13. Ecliptic cuts of the SIR model calculated for (a) -3 days, (b) 0 days and (c) +3

days to the arrival time of the ∆Ne peak at the Earth. Relative ∆Ne values are indicated with

a gray scale.

SOLA: IPS_index_v3.tex; 2 February 2023; 17:02; p. 29

Tokumaru et al.

Figure 14. Model calculations of the sky projection map of g-values using the SIR model

for (a) -5 days, (b) -3 days, (c) -1 days, (d) +1 days, (e) +3 days, and (f) +5 days to the

arrival time of the ∆Ne peak at the Earth. Center of the sky projection map corresponds to

the location of the Sun, and the dotted concentric circles are constant R contours drawn every

0.3 AU. Relative g-values are indicated with a gray scale.

SOLA: IPS_index_v3.tex; 2 February 2023; 17:02; p. 30

Solar Wind Disturbances during Cycles 23 and 24

Figure 15. Calculated Gave plotted as a function of the time difference to arrival of the ∆Ne

peak at the Earth.

SOLA: IPS_index_v3.tex; 2 February 2023; 17:02; p. 31

Tokumaru et al.

Figure 16. Ecliptic cuts of the CME model for (a) -1.6 days, (b) -0.8 days, and (c) -0.1 days

to the arrival time of the ∆Ne peak at the Earth. Relative ∆Ne values are indicated by a gray

scale. The center and right edge of the plot correspond to the locations of the Sun and the

Earth, respectively.

SOLA: IPS_index_v3.tex; 2 February 2023; 17:02; p. 32

Solar Wind Disturbances during Cycles 23 and 24

Figure 17. (upper) Sky projection maps and (lower) radial profiles of g-values calculated

using the CME model for (a) -1.6 days, (b) -0.8 days and (c) -0.1 days to the arrival time of

the ∆Ne peak at the Earth. The center of the sky projection map corresponds to the location

of the Sun, and the dotted concentric circles are constant R contours drawn every 0.3 AU.

Relative g-values are indicated by a gray scale in the sky projection map. Maximum values of

calculated g-values gmax at a given radial distance are plotted in the lower panel. Dot-dash

line in the lower plot indicates the location of the ∆Ne peak.

SOLA: IPS_index_v3.tex; 2 February 2023; 17:02; p. 33

Tokumaru et al.

Figure 18. Peak values of gmax plotted as a function of the time difference to arrival of the

∆Ne peak at the Earth.

SOLA: IPS_index_v3.tex; 2 February 2023; 17:02; p. 34

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る