リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Efficacy of the Novel Tubulin Polymerization Inhibitor PTC-028 for Myelodysplastic Syndrome」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Efficacy of the Novel Tubulin Polymerization Inhibitor PTC-028 for Myelodysplastic Syndrome

鐘, 丞 東京大学 DOI:10.15083/0002006946

2023.03.24

概要

[課程-2]
審査の結果の要旨
氏名 鐘 丞
Tubulin belongs to protein superfamily of globular proteins. Monomer tubulin can
polymerize into microtubules, which are highly dynamic and play a critical role in
mitosis during cell division. Therefore, microtubule dynamics is an important target for
the

developing

anti-cancer

drugs.

Inhibition

of

tubulin

polymerization

or

depolymerization has been utilized and shown efficacy in many types of solid tumors. A
novel small molecule PTC596 directly binds tubulin and inhibits microtubule
polymerization and has been shown to downregulates MCL-1 and induces p53independent apoptosis in acute myeloid leukemia cells. I herein investigated the efficacy
of another novel microtubule polymerization inhibitor and obtained the following results.
PTC-028 induced growth suppression and apoptosis of MDS cell lines. The efficacy of
PTC-028 in primary MDS samples was also confirmed by cell proliferation assays. PTC028 synergized with hypomethylating agents, such as decitabine and azacitidine, to
inhibit the growth and induce apoptosis of MDS cells. Mechanistically, a treatment with
PTC-028 induced G2/M arrest followed by apoptotic cell death. Finally, I assessed the
efficacy of PTC-028 in a xenograft mouse model of MDS using an MDS cell line, MDS-L
and AkaBLI bioluminescence imaging system system, which is composed of AkaLumineHCl and Akaluc. PTC-028 prolonged the survival of mice in xenograft models.
In summary, my data reveal a possible chemotherapeutic strategy for MDS by
disruption of microtubule dynamics as a single agent and in combination with
hypomethylating agents. My research suggests a novel therapeutic strategy for MDS.

よって本論文は博士( 医 学 )の学位請求論文として合格と認められる。

この論文で使われている画像

参考文献

1. Corey SJ, Minden MD, Barber DL, Kantarjian H, Wang JC, Schimmer AD.

Myelodysplastic syndromes: the complexity of stem-cell diseases. Nat Rev Cancer.

2007;7:118-29.

2. Desborough M, Estcourt LJ, Chaimani A, Doree C, Hopewell S, Trivella M,

Hadjinicolaou AV, Vyas P, Stanworth SJ. Alternative agents versus prophylactic

platelet transfusion for preventing bleeding in patients with thrombocytopenia due to

chronic bone marrow failure: a network meta-analysis and systematic review.

Cochrane Database Syst Rev. 2016 Jan 26; 2016(1): CD012055.

3. Ma X. Epidemiology of Myelodysplastic Syndromes. Am J Med. 2012 Jul; 125.

4. Vera Adema and Rafael Bejar. What lies beyond del(5q) in myelodysplastic

syndrome? Haematologica. 2013 Dec; 98(12): 1819–1821

5. Dilek Aktas, Ergul Tuncbilek. Myelodysplastic syndrome associated with monosomy

7 in childhood: a retrospective study. Cancer Genet Cytogenet. 2006 Nov; 171(1): 725.

6. Hellstrom-Lindberg E, Gulbrandsen N, ¨ Lindberg G, Ahlgren T, Dahl IMS, Dybedal

I, Grimfors G, Hesse-Sundin E, Hjorth M, Kanter-Lewensohn L, Linder O, Luthman

33

M, Löfvenberg E, Oberg G, Porwit-MacDonald A, Rådlund A, Samuelsson J, Tangen

JM, Winquist I, Wisloff F. A validated decision model for treating the anaemia of

myelodysplastic syndromes with erythropoietin 1 granulocyte colonystimulating

factor: significant effects on quality of life. Br J Haematol. 2003;120(6):1037-1046.

7. Oelschlaegel U, Alexander Rohnert M, Mohr B, Sockel K, Herold S, Ehninger G,

Bornhäuser M, Thiede C, Platzbecker U. Clonal architecture of del(5q)

myelodysplastic syndromes: aberrant CD5 or CD7 expression within the myeloid

progenitor compartment defines a subset with high clonal burden. Leukemia.

2016;30(2):517-520.

8. Giagounidis AAN, Kulasekararaj A, Germing U, Radkowski R, Haase S, Petersen P,

Göhring G, Büsche G, Aul C, Mufti GJ, Platzbecker U. Long-term transfusion

independence in del(5q) MDS patients who discontinue lenalidomide. Leukemia.

2012;26(4):855-858.

9. Giagounidis A, Mufti GJ, Mittelman M, Sanz G, Platzbecker U, Muus P, Selleslag D,

Beyne-Rauzy O, te Boekhorst P, del Cañizo C, Guerci-Bresler A, Nilsson L, Lübbert

M, Quesnel B, Ganser A, Bowen D, Schlegelberger B, Göhring G, Fu T, Benettaib B,

Hellström-Lindberg E, Fenaux P. Outcomes in RBC transfusion-dependent patients

with low-/intermediate-1-risk myelodysplastic syndromes with isolated deletion 5q

treated with lenalidomide: a subset analysis from the MDS-004 study. Eur J Haematol.

2014;93(5):429-438.

34

10. Fenaux P, Giagounidis A, Selleslag D, Beyne-Rauzy O, Mufti G, Mittelman M, Muus

P, Te Boekhorst P, Sanz G, Del Cañizo C, Guerci-Bresler A, Nilsson L, Platzbecker

U, Lübbert M, Quesnel B, Cazzola M, Ganser A, Bowen D, Schlegelberger B, Aul C,

Knight R, Francis J, Fu T, Hellström-Lindberg E; MDS-004 Lenalidomide del5q

Study Group. A randomized phase 3 study of lenalidomide versus placebo in RBC

transfusion-dependent patients with Low-/Intermediate-1-risk myelodysplastic

syndromes with del5q. Blood. 2011;118(14):3765-3776.

11. Jadersten M, Saft L, Smith A, Kulasekararaj A, Pomplun S, Göhring G, Hedlund A,

Hast R, Schlegelberger B, Porwit A, Hellström-Lindberg E, Mufti GJ. TP53 mutations

in low-risk myelodysplastic syndromes with del(5q) predict disease progression. J

Clin Oncol. 2011;29(15): 1971-1979.

12. Mossner M, Jann JC, Nowak D, Platzbecker U, Giagounidis A, Götze K, Letsch A,

Haase D, Shirneshan K, Braulke F, Schlenk RF, Haferlach T, Schafhausen P, Bug G,

Lübbert M, Ganser A, Büsche G, Schuler E, Nowak V, Pressler J, Obländer J, Fey S,

Müller N, Lauinger-Lörsch E, Metzgeroth G, Weiß C, Hofmann WK, Germing U,

Nolte F. Prevalence, clonal dynamics and clinical impact of TP53 mutations in

patients with myelodysplastic syndrome with isolated deletion (5q) treated with

lenalidomide: results from a prospective multicenter study of the german MDS study

group (GMDS). Leukemia. 2016;30(9):1956-1959.

13. Sallman DA, Komrokji R, Vaupel C, Cluzeau T, Geyer SM, McGraw KL, Al Ali NH,

Lancet J, McGinniss MJ, Nahas S, Smith AE, Kulasekararaj A, Mufti G, List A, Hall

35

J, Padron E. Impact of TP53 mutation variant allele frequency on phenotype and

outcomes in myelodysplastic syndromes. Leukemia. 2016; 30(3):666-673.

14. Scharenberg C, Giai V, Pellagatti A, Saft L, Dimitriou M, Jansson M, Jädersten M,

Grandien A, Douagi I, Neuberg DS, LeBlanc K, Boultwood J, Karimi M, Jacobsen

SE, Woll PS, Hellström-Lindberg E. Progression in patients with low- and

intermediate-1-risk del(5q) myelodysplastic syndromes is predicted by a limited

subset of mutations. Haematologica. 2017;102(3): 498-508

15. Platzbecker U. Treatment of MDS. Blood. 2019;133:1096-107.

16. Wang YP, Lei QY. Metabolic recoding of epigenetics in cancer. Cancer

Communications. 2018; 38 (1): 25.

17. Daura-Oller E, Cabre M, Montero MA, Paternain JL, Romeu A. Specific gene

hypomethylation

and

cancer:

new

insights

into

coding

region

feature

trends. Bioinformation. 2009; 3 (8): 340–343

18. Bates D, Eastman A. Microtubule destabilising agents: far more than just antimitotic

anticancer drugs. Br J Clin Pharmacol. 2017;83:255-68.

19. Chemotherapy-induced Peripheral Neuropathy. NCI Cancer Bulletin. Feb 23, 2010

[archived 2011-12-11];7(4):6.

36

20. Graf WD, Chance PF, Lensch MW, Eng LJ, Lipe HP, Bird TD. Severe vincristine

neuropathy in Charcot-Marie-Tooth disease type 1A Cancer. 1996. 77 (7): 1356–62

21. Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, Madhu

B, Goldgraben MA, Caldwell ME, Allard D, Frese KK, Denicola G, Feig C, Combs

C, Winter SP, Ireland-Zecchini H, Reichelt S, Howat WJ, Chang A, Dhara M, Wang

L, Rückert F, Grützmann R, Pilarsky C, Izeradjene K, Hingorani SR, Huang P, Davies

SE, Plunkett W, Egorin M, Hruban RH, Whitebread N, McGovern K, Adams J,

Iacobuzio-Donahue C, Griffiths J, Tuveson DA. Inhibition of Hedgehog signaling

enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science

2009; 324:1457–61.

22. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Malcolm Moore M, Seay

T, Tjulandin SA, Ma WW, Saleh MN, Harris M, Reni M, Dowden S, Laheru D,

Bahary N, Ramanathan RK, Tabernero J, Hidalgo M, Goldstein D, Van Cutsem E,

Wei X, Iglesias J, Renschler MF. Increased survival in pancreatic cancer with nabpaclitaxel plus gemcitabine. N Engl J Med 2013;369:1691–703.

23. Eberle-Singh JA, Sagalovskiy I, Maurer HC, Sa.stra SA, Palermo CF, Decker AR,

Kim MJ, Sheedy J, Mollin A, Cao L, Hu J, Branstrom A, Weetall M, Olive KP.

Effective delivery of a microtubule polymerization inhibitor synergizes with standard

regimens in models of pancreatic ductal adenocarcinoma. Clin Cancer Res.

2019;25:5548-60.

37

24. Nishida Y, Maeda A, Kim MJ, Cao L, Kubota Y, Ishizawa J, AlRawi A, Kato Y, Iwama

A, Fujisawa M, Matsue K, Weetall M, Dumble M, Andreeff M, Davis TW, Branstrom

A, Kimura S, Kojima K. The novel BMI-1 inhibitor PTC596 downregulates MCL-1

and induces p53-independent mitochondrial apoptosis in acute myeloid leukemia

progenitor cells. Blood Cancer J. 2017;7: e527.

25. Maeda A, Nishida Y, Weetall M, Cao L, Branstrom A, Ishizawa J, Nii T, Schober WD,

Abe Y, Matsue K, Yoshimura M, Kimura S, Kojima K. Targeting of BMI-1 expression

by the novel small molecule PTC596 in mantle cell lymphoma. Oncotarget.

2018;9:28547-60.

26. Bolomsky A, Muller J, Stangelberger K, Lejeune M, Duray E, Breid H, Vrancken L,

Pfeiffer C, Hübl W, Willheim M, Weetall M, Branstrom A, Zojer N, Caers J, Ludwig

H. The anti-mitotic agents PTC-028 and PTC596 display potent activity in preclinical models of multiple myeloma but challenge the role of BMI-1 as an essential

tumour gene. Br J Haematol. 2020 Sep;190(6):877-890.

27. Dey A, Xiong X, Crim A, Dwivedi SKD, Mustafi SB, Mukherjee P, et al. Evaluating

the mechanism and therapeutic potential of PTC-028, a novel inhibitor of BMI-1

function in ovarian cancer. Mol Cancer Ther. 2018;17:39-49.

28. Buechel M, Dey A, Dwivedi SKD, Crim A, Ding K, Zhang R, Mukherjee P, Moore

KN, Cao L, Branstrom A, Weetall M, Baird J, Bhattacharya R. Inhibition of BMI1, a

therapeutic approach in endometrial cancer. Mol Cancer Ther. 2018;17:2136-43.

38

29. Bakhshinyan D, Venugopal C, Adile AA, Garg N, Manoranjan B, Hallett R, Wang X,

Mahendram S, Vora P, Vijayakumar T, Subapanditha M, Singh M, Kameda-Smith

MM, Qazi M, McFarlane N, Mann A, Ajani OA, Yarascavitch B, Ramaswamy V,

Farooq H, Morrissy S, Cao L, Sydorenko N, Baiazitov R, Du W, Sheedy J, Weetall

M, Moon YC, Lee CS, Kwiecien JM, Delaney KH, Doble B, Cho YJ, Mitra S, Kaplan

D, Taylor MD, Davis TW, Singh SK. BMI1 is a therapeutic target in recurrent

medulloblastoma. Oncogene. 2019;38:1702-16.

30. Yanagihara K, Takigahira M, Takeshita F, Komatsu T, Nishio K, Hasegawa F, Ochiya

T. A photon counting technique for quantitatively evaluating progression of peritoneal

tumor dissemination. Cancer Res. 2006;66(15):7532-7539.

31. Drexler HG, Dirks WG, Macleod RA. Many are called MDS cell lines: one is chosen.

Leuk Res. 2009;33(8):1011-1016.

32. Matsuoka A, Tochigi A, Kishimoto M, Nakahara T, Kondo T, Tsujioka T, Tasaka T,

Tohyama Y, Tohyama K. Lenalidomide induces cell death in an MDS-derived cell

line with deletion of chromosome 5q by inhibition of cytokinesis. Leukemia.

2010;24(4):748-755.

33. Tohyama K, Tsutani H, Ueda T, Nakamura T, Yoshida Y. Establishment and

characterization of a novel myeloid cell line from the bone marrow of a patient with

the myelodysplastic syndrome. Br J Haematol. 1994;87(2):235-242.

39

34. Kida JI, Tsujioka T, Suemori SI, Okamoto S, Sakakibara K, Takahata T, Yamauchi T,

Kitanaka A, Tohyama Y, Tohyama K. An MDS-derived cell line and a series of its

sublines serve as an in vitro model for the leukemic evolution of MDS. Leukemia.

2018;32(8):1846-1850.

35. Chou TC. Drug combination studies and their synergy quantification using the ChouTalalay method. Cancer Res. 2010;70(2):440-446.

36. Iwano S, Sugiyama M, Hama H, Watakabe A, Hasegawa N, Kuchimaru T, Kuchimaru

T, Tanaka KZ, Takahashi M, Ishida Y, Hata J, Shimozono S, Namiki K, Fukano T,

Kiyama M, Okano H, Kizaka-Kondoh S, McHugh TJ, Yamamori T, Hioki H, Maki S,

Miyawaki A. Single-cell bioluminescence imaging of deep tissue in freely moving

animals. Science. 2018;359(6378):935-939.

37. Ito R, Takahashi T, Katano I, Kawai K, Kamisako T, Ogura T, Ida-Tanaka M, Suemizu

H, Nunomura S, Ra C, Mori A, Aiso S, Ito M. Establishment of a human allergy model

using human IL-3/GM-CSF-transgenic NOG mice. J Immunol. 2013;191(6):28902899.

38. Punganuru SR, Madala HR, Mikelis CM, Dixit A, Arutla V, Srivenugopal KS.

Conception, synthesis, and characterization of a rofecoxib-combretastatin hybrid drug

with potent cyclooxygenase-2 (COX-2) inhibiting and microtubule disrupting

activities in colon cancer cell culture and xenograft models. Oncotarget 2018 May

40

25;9(40):26109-26129.

39. Rowinsky, E. K. & R. C. Donehower. Paclitaxel (taxol). N Engl J Med

1995;332:1004-14

40. Nakagawa T, Saitoh S, Imoto S, Itoh M, Tsutsumi M, Hikiji K, Nakao Y, Fujita T.

Loss of multiple point mutations of RAS genes associated with acquisition of

chromosomal abnormalities during disease progression in myelodysplastic syndrome.

Br J Haematol. 1991;77(2):250-252.

41. Kitamura T, Tange T, Terasawa T, Chiba S, Kuwaki T, Miyagawa K, Piao YF,

Miyazono K, Urabe A, Takaku F. Establishment and characterization of a unique

human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin. J

Cell Physiol. 1989;140(2):323-334.

42. Matsuo Y, MacLeod RA, Uphoff CC, Drexler HG, Nishizaki C, Katayama Y, Kimura

G, Fujii N, Omoto E, Harada M, Orita K. Two acute monocytic leukemia (AML-M5a)

cell lines (MOLM-13 and MOLM-14) with interclonal phenotypic heterogeneity

showing MLL-AF9 fusion resulting from an occult chromosome insertion,

ins(11;9)(q23;p22p23). Leukemia. 1997;11(9):1469-1477.

43. Maimaitili Y, Inase A, Miyata Y, Kitao A, Mizutani Y, Kakiuchi S, Shimono Y, Saito

Y, Sonoki T, Minami H, Matsuoka H.. An mTORC1/2 kinase inhibitor enhances the

cytotoxicity of gemtuzumab ozogamicin by activation of lysosomal function. Leuk

41

Res. 2018;74:68-74.

44. Gururaja TL, Goff D, Kinoshita T, Goldstein E, Yung S, McLaughlin J, Pali E, Huang

J, Singh R, Daniel-Issakani S, Hitoshi Y, Cooper RD, Payan DG. R-253 disrupts

microtubule networks in multiple tumor cell lines. Clin Cancer Res. 2006 Jun

15;12(12):3831-42.

45. Thomas E, Gopalakrishnan V, Hegde M, Kumar S, Karki SS, Raghavan SC,

Choudhary B. A novel resveratrol based tubulin inhibitor induces mitotic arrest and

activates apoptosis in cancer cells. Sci Rep. 2016;6:34653.

46. Lee CH, Lin YF, Chen YC, Wong SM, Juan SH, Huang HM. MPT0B169 and

MPT0B002, New Tubulin Inhibitors, Induce Growth Inhibition, G2/M Cell Cycle

Arrest, and Apoptosis in Human Colorectal Cancer Cells. Pharmacology. 2018;102(56):262

47. Jackman RW, Rhoads MG, Cornwell E, Kandarian SC. Microtubule-mediated NFkappaB activation in the TNF-alpha signaling pathway. Exp Cell Res.

2009;315(19):3242-3249.

48. Zeng QZ, Yang F, Li CG, Xu LH, He XH, Mai FY, Zeng CY, Zhang CC, Zha QB,

Ouyang DY. Paclitaxel enhances the innate immunity by promoting NLRP3

inflammasome activation in macrophages. Front Immunol. 2019;10:72.

42

49. Mihara K, Chowdhury M, Nakaju N, Hidani S, Ihara A, Hyodo H, Yasunaga S,

Takihara Y, Kimura A. Bmi-1 is useful as a novel molecular marker for predicting

progression of myelodysplastic syndrome and patient

prognosis. Blood.

2006;107(1):305-8

50. Harada Y, Harada H. Molecular pathways mediating MDS/AML with focus on

AML1/RUNX1 point mutations. J Cell Physiol. 2009;220(1):16-20

51. Voncken JW, Schweizer D, Aagaard L, Sattler L, Jantsch MF, van Lohuizen M.

Chromatin-association of the Polycomb group protein BMI1 is cell cycle-regulated

and correlates with its phosphorylation status. J Cell Sci. 1999;112 (Pt 24):4627-39

52. Taga T, Shimomura Y, Horikoshi Y, Ogawa A, Itoh M, Okada M, Continuous and

high-dose cytarabine combined chemotherapy in children with down syndrome and

acute myeloid leukemia: Report from the Japanese children's cancer and leukemia

study group (JCCLSG) AML 9805 down study. Pediatr Blood Cancer. 2011 Jul

15;57(1):36-40

53. Pavel Davidovich, Conor J Kearney, Seamus J Martin. Inflammatory Outcomes of

Apoptosis, Necrosis and Necroptosis. Biol Chem. 2014;395(10):1163-71.

54. Yong Yang, Gening Jiang, Peng Zhang, Jie Fan. Programmed Cell Death and Its Role

in Inflammation. Mil Med Res. 2015;2:12.

43

55. Jung YJ, Isaacs JS, Lee S, Trepel J, Neckers L. Microtubule disruption utilizes an

NFkappa B-dependent pathway to stabilize HIF-1alpha protein. J Biol Chem.

2003;278(9):7445-52.

56. Kumuda C. Das, Carl W. White. Activation of NF-κB by antineoplastic agents. J Biol

Chem. 1997;272:14914-14920.

44

Figure 1 The process of clone evolution from normal stem cell to AML via MDS. Normal

hematopoiesis is disrupted in MDS state before leukemogenesis.

45

Vincristine

Paclitaxel

Figure 2 Chemical structure of clinically used microtubule inhibitors (Vincristine &

Paclitaxel)

46

Figure 3 Chemical structure of PTC-028 and PTC596.

47

Figure 4 Distribution of tubulin in polymerized (P) vs. soluble (S) fractions analyzed by

immunoblotting in PTC-028-treated MDS-L cells. MDS-L cells were treated with 3 and

5 μM of PTC-028 and 1 μM paclitaxel for 4 hours. The fractions containing soluble and

polymerized tubulin were collected and separated by SDS-PAGE. The α-tubulin antibody

was used to detect tubulin by Western blotting. Band intensity was calculated using Image

lab (Bio-Rad) and was shown as means ± S.D. (n=3). *P<0.05, ***P<0.001 by the

Student’s t-test.

48

Figure 5 Growth of MDS-L and SKM-1 MDS cells and HL-60 and THP-1 AML cells

treated with the indicated concentrations of PTC-028. The numbers of viable cells on

days 3 and 6. Data are shown as means ± S.D. (n=3). *P<0.05, **P<0.01, ***P<0.001 by

the Student’s t-test.

49

Figure 6 CC50 of MDS and AML cell lines. Cells lines were treated with the indicated

concentrations of PTC-028 for 3 days in triplicate (left panels). CC50 was defined as the

concentration required to reduce cell viability by 50% and is presented in the right panel.

Cell viability was assessed by MTS assays.

50

Figure 7 Growth of primary MDS cells treated with PTC-028. CD34+ MDS cells were

cultured in the presence of SCF, TPO, IL-3, GM-CSF, and FLT3 ligand in the presence

of the indicated doses of PTC-028. Cell growth was examined by MTS assays after 48

hours in culture (left panel) or viable cells were counted on days 3 and 6 (right panel).

Data are shown as means ± S.D. (n=3). *P<0.05, **P<0.01, ***P<0.001 by the Student’s

t-test.

51

Figure 8 Caspase-Glo 3/7 values 3 days after the treatment with PTC-028. MDS cells

were treated with PTC-028 at the indicated doses in triplicate. An equal volume of

Caspase-Glo 3/7 agent was added to samples before recording luminescence. *P<0.05,

**P<0.01, ***P<0.001 by the Student’s t-test.

52

Figure 9 MTS assays showing the viability of MDS-L and SKM-1 cells treated with the

indicated doses of PTC-028 and decitabine (DAC) or azacitidine (AZA) relative to the

untreated control. Data are shown as means ± S.D. (n=3). Fa-CI plots are shown in the

lower panel of each graph. CI, combination index. Fa (fraction affected) indicates the

fraction of cells affected by the drug.

53

Figure 10 Apoptosis induced by PTC028 and/or DNA hypomethylating agents. MDS-L

cells were treated with PTC-028 and/or DNA hypomethylating agents (DAC or AZA) for

72 hours, stained with Annexin V and PI, and then analyzed by flow cytometry. Results

are shown as means ± S.D. (n=3). *P<0.05, **P<0.01, ***P<0.001 by the Student’s ttest.

54

Figure 11 Growth inhibition of MDS-L cells by PTC596. Growth curve of MDS-L cells

treated with the indicated concentrations of PTC596 (left panel) and CC50 of PTC596 in

MDS-L cells (right panel). Cells were treated with the indicated concentrations of

PTC596 for 3 days in triplicate to evaluate CC50.

55

Figure 12 MTS assays showing the viability of MDS-L treated with the indicated doses

of PTC596 and DAC relative to the untreated control (left panel) and a Fa-CI plot (right

panel)

56

Figure 13 CC50 of microtubule-destabilizing agents in MDS and AML cells. Cell lines

were treated with the indicated agents for 3 days in triplicate. Data are shown as means ±

S.D. (n=3).

57

Figure 14 Cell cycle arrest induced by PTC-028. MDS-L and SKM-1 were exposed to

PTC-028 for 72 hours at 40 and 80 nM, respectively. BrdU was added to the culture 4

hours before the analysis. Representative contour plots of BrdU incorporation (y axis)

versus DNA content assessed by 7-AAD staining (x axis) are shown in the left panels.

The proportion of cells at the indicated phase of the cell cycle is shown as means ± S.D.

(n=3) in the right panels. **P<0.01, ***P<0.001 by the Student’s t-test.

58

PTC-028

Gene Expression up

MDS-L

139

24

SKM-1

380

PTC-028

Gene Expression Down

MDS-L

33

SKM-1

76

Figure 15 Venn diagram showing the overlap of up-regulated (≥1.5-fold) or down- (≤

0.66-fold) genes between MDS-L and SKM-1 cells treated with PTC-028 relative to the

DMSO control.

59

Figure 16 Summary of the gene set enrichment in MDS-L and SKM-1 cells treated with

PTC-028 relative to non-treated cells in GSEA using RNA-seq data. MDS-L and SKM-1

cells were cultured in the presence of PTC-028 (MDS-L 30nM; SKM-1 40nM) for 72

hours. Representative GSEA plots are shown in the right panelspanels. Normalized

enrichment scores (NES), nominal p values (NOM), and false discovery rates (FDR) are

indicated.

60

Figure 17 Schematic representation of the xenograft MDS model using NOG IL-3/GMTG mice. NOG mice irradiated at a dose of 1.8 Gy were infused with 1×10 7 MDSL/Akaluc cells via the tail vein. On day 27 post-transplantation, recipient mice (n=5 in

each group) received vehicle and 12.5 mg/kg PTC-028 orally twice a week for 7 weeks.

61

Figure 18 The engraftment of MDS-L/Akaluc cells was confirmed by bioluminescence

imaging. Images of Akaluc signals in representative mice (3 mice each) are shown at

different time points during the treatment.

62

Figure 19 Quantification of photon counts from MDS-L/Akaluc cells in xenograft MDS

mice. Akaluc signals taken by a photon-counting analyzer. Data are shown as means ±

S.D. *P<0.05, **P<0.01, ***P<0.001 by the Student’s t-test.

63

Figure 20 Kaplan–Meier survival of mice. Survival was evaluated from the first day of

the treatment to death. The significance of differences between the PTC-028-treated and

vehicle-treated groups was assessed using a Log-rank test. *P<0.05, **P<0.01,

***P<0.001.

64

Figure 21 Schematic representation of the xenograft MDS model using NOG IL-3/GMTG mice. NOG mice irradiated at a dose of 1.8 Gy were infused with 1×107 MDSL/Akaluc cells via the tail vein. On day 33 post-transplantation, recipient mice (n=5 in

each group) received vehicle and 6.25 mg/kg PTC-028 orally twice a week. DAC was

administered at a dose of 0.3 mg/kg intraperitoneally 3 times per week.

65

Figure 22 The engraftment of MDS-L/Akaluc cells was confirmed by bioluminescence

imaging. Images of Akaluc signals in representative mice (4 mice each) are shown at

different time points during the treatment. Quantification of photon counts from MDSL/Akaluc cells in xenograft MDS mice. Akaluc signals taken by a photon-counting

analyzer. Data are shown as means ± S.D. **P<0.01, ***P<0.001 by the Student’s t-test.

66

Figure 23 Kaplan–Meier survival of mice. Survival was evaluated from the first day of

the treatment to death. **P<0.01, ***P<0.001 by the Log-rank test.

67

Figure 24 Body weight (BW) and hemoglobin (Hb) levels of mice. Data are shown as

means ± S.D. n.s., not significant by the Student’s t-test.

68

DMSO 48h

72h

96h

BMI-1

uH2A

H2A

B-actin

Figure 25 Level of BMI-1 and uH2A in MDS-L cells cultured in the presence of DMSO

and 40nM PTC-028 for 48h, 72h and 96h.

69

Figure 26. Apoptosis induced by PTC-028.The indicated cells were treated with PTC028 for 72 hours, stained with Annexin V and PI, and then analyzed by flow cytometry.

Results are shown as means ± S.D. (n=3). **P<0.01, ***P<0.001.

70

Table 1 Human MDS bone marrow samples.

71

Table 2 Upregulation of Signaling Pathway Induced by PTC-028 in MDS-L Cells

NAME

ES

NES

NOM p-val

FDR q-val

HALLMARK_TNFA_SIGNALING_VIA_NFKB

0.6108075

1.879353

HALLMARK_COAGULATION

0.5875037

1.7655075

0.002344156

HALLMARK_ALLOGRAFT_REJECTION

0.5704975

1.7577232

0.00187901

HALLMARK_P53_PATHWAY

0.54956275

1.7134482

0.00262637

HALLMARK_APOPTOSIS

0.54781187

1.6755384

0.004013803

0.5385772

1.6667895

0.003868514

HALLMARK_INFLAMMATORY_RESPONSE

0.52368957

1.6260667

0.005695151

HALLMARK_IL6_JAK_STAT3_SIGNALING

0.55716753

1.579828

0.0013947

0.008902214

HALLMARK_INTERFERON_ALPHA_RESPONSE

0.55188423

1.5787069

0.008018492

0.5004975

1.5488061

0.009927

0.48502183

1.5044812

0.001242236

0.016797332

HALLMARK_ANGIOGENESIS

0.5948357

1.4922953

0.033383913

0.01766459

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION

0.4732653

1.4622483

0.002528445

0.022271285

HALLMARK_UV_RESPONSE_DN

0.47187793

1.4172851

0.007692308

0.03291526

HALLMARK_BILE_ACID_METABOLISM

0.47735313

1.3960559

0.01899593

0.03932956

HALLMARK_COMPLEMENT

0.44702625

1.3827937

0.003911343

0.04317236

HALLMARK_ESTROGEN_RESPONSE_EARLY

0.42592376

1.3226221

0.011494253

0.080089346

0.410993

1.2768729

0.043209877

0.124076076

HALLMARK_INTERFERON_GAMMA_RESPONSE

HALLMARK_HEME_METABOLISM

HALLMARK_IL2_STAT5_SIGNALING

HALLMARK_KRAS_SIGNALING_UP

72

Table 3 Downregulation of Signaling Pathway Induced by PTC-028 in MDS-L Cells

NAME

ES

NES

NOM p-val

FDR q-val

HALLMARK_MYC_TARGETS_V1

-0.5312721

-1.8584391

0.004333333

HALLMARK_E2F_TARGETS

0.47660512

-1.6709709

0.005758667

HALLMARK_OXIDATIVE_PHOSPHORYLATION

-0.4207183

-1.5008153

0.029381553

73

Table 4 Upregulation of Signaling Pathway Induced by PTC-028 in SKM-1 Cells

NAME

ES

HALLMARK_TNFA_SIGNALING_VIA_NFKB

NES

NOM p-val

FDR q-val

0.6467109

2.1331067

HALLMARK_P53_PATHWAY

0.58609194

1.9506716

HALLMARK_APICAL_JUNCTION

0.58014596

1.9302019

HALLMARK_INFLAMMATORY_RESPONSE

0.55264056

1.8320497

2.87E-04

0.5546269

1.7967594

2.29E-04

HALLMARK_COAGULATION

0.55692613

1.7888622

1.91E-04

HALLMARK_MYOGENESIS

0.5327498

1.7650108

1.64E-04

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION

0.5172625

1.7131113

5.57E-04

HALLMARK_TGF_BETA_SIGNALING

0.5863241

1.6650617

0.002022102

HALLMARK_IL6_JAK_STAT3_SIGNALING

0.5481379

1.661659

0.001819892

0.49732518

1.6503032

0.002014123

0.6159639

1.5805967

0.014059754

0.005915025

0.47112146

1.5666751

0.00652423

0.6000284

1.5502645

0.014876033

0.00710283

HALLMARK_UV_RESPONSE_UP

0.47220153

1.522929

0.008662837

HALLMARK_IL2_STAT5_SIGNALING

0.45630616

1.5213256

0.008390245

HALLMARK_KRAS_SIGNALING_UP

0.45659617

1.5073739

0.001416431

0.009566529

0.4333904

1.4450694

0.017967768

HALLMARK_INTERFERON_GAMMA_RESPONSE

0.43104485

1.4400431

0.001369863

0.018887723

HALLMARK_COMPLEMENT

0.43133524

1.4359385

0.005479452

0.018809563

0.5228781

1.4232961

0.031045752

0.021028811

HALLMARK_APOPTOSIS

HALLMARK_HYPOXIA

HALLMARK_NOTCH_SIGNALING

HALLMARK_ALLOGRAFT_REJECTION

HALLMARK_ANGIOGENESIS

HALLMARK_XENOBIOTIC_METABOLISM

HALLMARK_REACTIVE_OXIGEN_SPECIES_PATHWAY

74

Table 5 Downregulation of Signaling Pathway Induced by PTC-028 in SKM-1 Cells

NAME

ES

NES

HALLMARK_MYC_TARGETS_V1

0.53554523

-1.9443746

HALLMARK_E2F_TARGETS

0.42601994

-1.5342134

0.022642275

HALLMARK_PROTEIN_SECRETION

0.46719083

-1.5294216

0.002890173

0.01509485

HALLMARK_ANDROGEN_RESPONSE

0.40367532

-1.3367312

0.017045455

0.07223807

75

NOM p-val

FDR q-val

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る