リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Synthesis of Benzo-Fused Cyclic Ketones via Metal-Free Ring Expansion of Cyclopropanols Enabled by Proton-Coupled Electron Transfer」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Synthesis of Benzo-Fused Cyclic Ketones via Metal-Free Ring Expansion of Cyclopropanols Enabled by Proton-Coupled Electron Transfer

Kikuchi, Tomohiro Yamada, Keiji Yasui, Takeshi Yamamoto, Yoshihiko 名古屋大学

2021.06.18

概要

The metal-free ring expansion of cyclopropanols containing a pendant styrene moiety was successfully achieved using a proton-coupled electron transfer enabled by an organic photoredox catalyst. Through this, variants on 1-tetralone and 1-benzosuberone bearing a substituent at the benzylic position were selectively obtained through the regioselective ring closure of alkyl radical intermediates depending on the substitution pattern of the alkene moiety.

参考文献

(1) (a) Wellington, K. D.; Cambie, R. C.; Rutledge, P. S.; Bergquist, P. R.; Chemistry of Sponges. 19. Novel Bioactive Metabolites from Hamigera tarangaensis. J. Nat. Prod. 2000, 63, 79-85. (b) Kaysser, L.; Bernhardt, P.; Nam, S.-J.; Loesgen, S.; Ruby, J. G.; Skewes-Cox, P.; Jensen, P. R.; Fenical, W.; Moore, B. S. Merochlorins A−D, Cyclic Meroterpenoid Antibiotics Biosynthesized in Divergent Pathways with Vanadium-Dependent Chloroperoxidases. J. Am. Chem. Soc. 2012, 134, 11988–11991. (c) Tanaka, T.; Ito, T.; Ido, Y.; Son, T.-K.;Nakaya, K.; Iinuma, M.; Ohyama, M.; Chelladurai, V. Stilbenoids in the stem bark of Hopea parviflora. Phytochemistry 2000, 53, 1015– 1019.

(2) (a) Poon, P. S.; Banerjee, A. K.; Vera, W. J.; Mora, H. D.; Laya, M. S.; Cabrera, E. V.; Melean, C. E. Use of 5-methoxy, 6-methoxy and 7- methoxy-α-tetralones in the synthesis of diterpenes,sesquiterpenes and other natural products. J. Chem. Res. 2008, 181–187. (b) Farghaly, T. A.; Gomha, S. M.; Dawoodac, K. M.; Shaa- ban, M. R. Synthetic routes to benzosuberone-based fused and spiro-heterocyclic ring systems. RSC Adv. 2016, 6, 17955–17979.

(3) Selected reports using a transition metal catalyst: (a) Nishi- mura, T.; Ohe, K.; Uemura, S. Oxidative Transformation of tert-Cy- clobutanols by Palladium Catalysis under Oxygen Atmosphere. J. Org. Chem. 2001, 66, 1455–1465. (b) Ishida, N.; Sawano, S.; Mura- kami, M. Synthesis of 3,3-disubstituted α-tetralones by rhodium- catalysed reaction of 1-(2-haloaryl)cyclobutanols. Chem. Commun. 2012, 48, 1973−1975. (c) Hoshimoto, Y.; Hayashi, Y.; Suzuki, H.; Ohashi, M.; Ogoshi, S. Synthesis of Five- and Six-Membered Benzo- cyclic Ketones through Intramolecular Alkene Hydroacylation Cat- alyzed by Nickel(0)/N-Heterocyclic Carbenes. Angew. Chem. Int. Ed. 2012, 51, 10812–10815. (d) Yasui, T.; Kikuchi, T.; Yamamoto, Y. Rhodium-catalyzed cycloisomerization of ester-tethered 1,6- diynes with cyclopropanol moiety leading to tetralone/exocyclic diene hybrid molecules. Chem. Commun. 2020, 56, 12865−12868.

(4) Selected reports of visible-light-mediated synthesis of 1-tetra- lones: (a) Shu, W.; Nevado, C. Visible-Light-Mediated Remote Ali- phatic C–H Functionalizations through a 1,5-Hydrogen Transfer Cascade. Angew. Chem. Int. Ed. 2017, 56, 1881–1884. (b) Dange,N. S.; Jatoi, A. H.; Robert, F.; Landais, Y. Visible-Light-Mediated Addi- tion of Phenacyl Bromides onto Cyclopropenes. Org. Lett. 2017, 19, 3652–3655.

(5) Selected reports of the synthesis of 1-benzosuberones using in- tramolecular Friedel-Crafts acylation: (a) Yamada, R.; Adachi, Y.; Yokoshima, S.; Fukuyama, T. Total Synthesis of (−)-Daphenylline. Angew. Chem. Int. Ed. 2016, 55, 6067−6070. (b) Xu, B.; Wang, B.;Xun, W.; Qiu, F. G. Total Synthesis of (−)-Daphenylline. Angew. Chem. Int. Ed. 2019, 58, 5754−5757.

(6) (a) Wang, K.; Meng, L.-G.; Zhang, Q.; Wang, L. Direct construc- tion of 4-aryl tetralones via visible-light-induced cyclization of sty- rene with molecular oxygen. Green Chem. 2016, 18, 2864–2870;(b) Xia, Z.-L.; Zheng, C.; Xu, R.-Q.; You, S.-L. Chiral phosphoric acid catalyzed aminative dearomatization of α-naphthols/Michael ad- dition sequence. Nat. Commun. 2019, 10, #3150.

(7) A review of radical-mediated ring expansions: Dowd, P.; Zhang,W. Free Radical-Mediated Ring Expansion and Related Annulations.Chem. Rev. 1993, 93, 2091–2115.

(8) Yu, J.; Zhao, H.; Liang, S.; Bao, X.; Zhu, C. A facile and regioselec- tive synthesis of 1-tetralones via silver-catalyzed ring expansion. Org. Biomol. Chem. 2015, 13, 7924–7927.

(9) Fang, J.; Li, L.; Yang, C.; Chen, J.; Deng, G.-J.; Gong, H. Tandem Oxidative Ring-Opening/Cyclization Reaction in Seconds in Open Atmosphere for the Synthesis of 1-Tetralones in Water−Acetoni- trile. Org. Lett. 2018, 20, 7308–7311.

(10) Reviews of synthetic application of PCET: (a) Gentry, E. C.; Knowles, R. R. Synthetic Applications of Proton-Coupled Electron Transfer. Acc. Chem. Res. 2016, 49, 1546–1556. (b) Miller, D. C.; Tarantino, K. T.; Knowles, R. R. Proton-Coupled Electron Transfer in Organic Synthesis: Fundamentals, Applications, and Opportuni- ties. Top. Curr. Chem. 2016, 374, #30. (c) Hoffmann, N. Proton-Cou- pled Electron Transfer in Photoredox Catalytic Reactions. Eur. J. Org. Chem. 2017, 2017, 1982–1992.

(11) (a) Zhao, K.; Yamashita, K.; Carpenter, J. E.; Sherwood, T. C.; Ewing, W. R.; Cheng, P. T. W.; Knowles, R. R. Catalytic Ring Expan- sions of Cyclic Alcohols Enabled by Proton-Coupled Electron Transfer. J. Am. Chem. Soc. 2019, 141, 8752–8757. Pioneering ap- plications of PCET process to the transformation of alcohols, see also: (b) Yayla, H. G.; Wang, H.; Tarantino, K. T.; Orbe, H. S.; Knowles,R. R. Catalytic Ring-Opening of Cyclic Alcohols Enabled by PCET Ac- tivation of Strong O−H Bonds. J. Am. Chem. Soc. 2016, 138, 10794– 10797. (c) Ota, E.; Wang, H.; Frye, N. L.; Knowles, R. R. A Redox Strategy for Light-Driven, Out-of-Equilibrium Isomerizations and Application to Catalytic C−C Bond Cleavage Reactions. J. Am. Chem. Soc. 2019, 141, 1457–1462. (d) Nguyen, S. T.; Murray, P. R. D.;Knowles, R. R. Light-Driven Depolymerization of Native Lignin En- abled by Proton-Coupled Electron Transfer. ACS Catal. 2020, 10, 800–805. (e) Huang, L.; Ji, T.; Rueping, M. Remote Nickel-Catalyzed Cross-Coupling Arylation via Proton-Coupled Electron Transfer- Enabled C–C Bond Cleavage. J. Am. Chem. Soc. 2020, 142, 3532– 3539.

(12) (a) Nikolaev, A.; Orellana, A. Transition-Metal- Catalyzed C–C and C–X Bond-Forming Reactions Using Cyclopropanols. Synthesis 2016, 48, 1741–1768. (b) McDonald, T. R.; Mills, L. R.; West, M. S.;Rousseaux, S. A. L. Selective Carbon–Carbon Bond Cleavage of Cy- clopropanols. Chem. Rev. 2021, 121, 3–79; (c) Morcillo, S. P. Radi- cal-Promoted C–C Bond Cleavage: A Deconstructive Approach for Selective Functionalization. Angew. Chem. Int. Ed. 2019, 58, 14044– 14054; (d) Murakami, M.; Ishida, N. Cleavage of Carbon–Carbon σ- Bonds of Four-Membered Rings. Chem. Rev. 2021, 121, 264–299;(e) Yu, X.-Y.; Chen, J.-R.; Xiao, W.-J. Visible Light-Driven Radical-Me- diated C−C Bond Cleavage/Functionalization in Organic Synthesis. Chem. Rev. 2021, 121, 506–561.

(13) Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, R. A.; Malliaras, G. G.; Bernhard, S. Single-Layer Electroluminescent Devices and Photoinduced Hydrogen Production from an Ionic Iridium(III) Complex. Chem. Mater. 2005, 17, 5712–5719.

(14) Ishimatsu, R.; Matsunami, S.; Kasahara, T.; Mizuno, J.; Edura, T.; Adachi, C.; Nakano, K.; Imato, T. Electrogenerated Chemilumi- nescence of Donor–Acceptor Molecules with Thermally Activated Delayed Fluorescence. Angew. Chem. Int. Ed. 2014, 53, 6993–6996.

(15) Luo, J.; Zhang, J. Donor−Acceptor Fluorophores for Visible- Light-Promoted Organic Synthesis: Photoredox/Ni Dual Catalytic C(sp3)−C(sp2) Cross-Coupling. ACS Catal. 2016, 6, 873−877.

(16) (a) Fukuzumi, S.; Kotani, H.; Ohkubo, K.; Ogo, S.; Tkachenko, N. V.; Lemmetyinen, H. Electron-Transfer State of 9-Mesityl-10- methylacridinium Ion with a Much Longer Lifetime and Higher En- ergy Than That of the Natural Photosynthetic Reaction Center. J. Am. Chem. Soc. 2004, 126, 1600–1601. (b) Ohkubo, K.; Mizushima, K.; Iwata, R.; Souma, K.; Suzuki, N.; Fukuzumi, S. Simultaneous pro- duction of p-tolualdehyde and hydrogen peroxide in photocatalytic oxygenation of p-xylene and reduction of oxygen with 9-mesityl- 10-methylacridinium ion derivatives. Chem. Commun. 2010, 46, 601−603.

(17) Lovett, G. H.; Sparling, B. A. Decarboxylative Anti-Michael Ad- dition to Olefins Mediated by Photoredox Catalysis. Org. Lett. 2016, 18, 3494–3497.

(18) The relative configuration of 3z was determined by X-ray crystallographic analysis of the corresponding hydrazone deriva- tive. Crystallographic data have been deposited with the Cam- bridge Crystallographic Data Centre database (http://www.ccdc.cam.ac.uk/) under code CCDC 2084574. For de- tails, see Supporting Information.

(19) Intramolecular hydroetherification of alkenols was reported by Knowles and co-workers: Tsui, E.; Metrano, A. J.; Tsuchiya, Y.; Knowles, R. R. Catalytic Hydroetherification of Unactivated Al- kenes Enabled by Proton-Coupled Electron Transfer. Angew. Chem. Int. Ed. 2020, 59, 11845–11849.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る