リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Timelike entanglement entropy」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Timelike entanglement entropy

Doi, Kazuki Harper, Jonathan Mollabashi, Ali Takayanagi, Tadashi Taki, Yusuke 京都大学 DOI:10.1007/JHEP05(2023)052

2023.05

概要

We define a new complex-valued measure of information called the timelike entanglement entropy (EE) which in the boundary theory can be viewed as a Wick rotation that changes a spacelike boundary subregion to a timelike one. An explicit definition of the timelike EE in 2d field theories is provided followed by numerical computations which agree with the analytic continuation of the replica method for CFTs. We argue that timelike EE should be correctly interpreted as another measure previously considered, the pseudo entropy, which is the von Neumann entropy of a reduced transition matrix. Our results strongly imply that the imaginary part of the pseudo entropy describes an emergent time which generalizes the notion of an emergent space from quantum entanglement. For holographic systems we define the timelike EE as the total complex valued area of a particular stationary combination of both space and timelike extremal surfaces which are homologous to the boundary region. For the examples considered we find explicit matching of our optimization procedure and the careful implementation of the Wick rotation in the boundary CFT. We also make progress on higher dimensional generalizations and relations to holographic pseudo entropy in de Sitter space.

この論文で使われている画像

参考文献

[1] J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200] [INSPIRE].

[3] S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006)

045 [hep-th/0605073] [INSPIRE].

[4] V.E. Hubeny, M. Rangamani and T. Takayanagi, A Covariant holographic entanglement

entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

[5] B. Swingle, Entanglement Renormalization and Holography, Phys. Rev. D 86 (2012) 065007

[arXiv:0905.1317] [INSPIRE].

[6] M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42

(2010) 2323 [arXiv:1005.3035] [INSPIRE].

[7] A.J. Leggett and A. Garg, Quantum mechanics versus macroscopic realism: Is the flux there

when nobody looks?, Phys. Rev. Lett. 54 (1985) 857 [INSPIRE].

[8] J. Fitzsimons, J. Jones and V. Vedral, Quantum correlations which imply causation,

arXiv:1302.2731 [INSPIRE].

[9] S.J. Olson and T.C. Ralph, Extraction of timelike entanglement from the quantum vacuum,

Phys. Rev. A 85 (2012) 012306 [arXiv:1101.2565] [INSPIRE].

[10] J. Cotler, C.-M. Jian, X.-L. Qi and F. Wilczek, Superdensity Operators for Spacetime

Quantum Mechanics, JHEP 09 (2018) 093 [arXiv:1711.03119] [INSPIRE].

[11] J. Cotler et al., Quantum Virtual Cooling, Phys. Rev. X 9 (2019) 031013

[arXiv:1812.02175] [INSPIRE].

[12] A. Lerose, M. Sonner and D.A. Abanin, Scaling of temporal entanglement in proximity to

integrability, Phys. Rev. B 104 (2021) 035137 [arXiv:2104.07607] [INSPIRE].

[13] G. Giudice et al., Temporal Entanglement, Quasiparticles, and the Role of Interactions,

Phys. Rev. Lett. 128 (2022) 220401 [arXiv:2112.14264] [INSPIRE].

[14] A. Foligno, T. Zhou and B. Bertini, Temporal Entanglement in Chaotic Quantum Circuits,

arXiv:2302.08502 [INSPIRE].

[15] A.J. Parzygnat and J. Fullwood, From time-reversal symmetry to quantum Bayes’ rules,

arXiv:2212.08088 [INSPIRE].

[16] K. Doi, J. Harper, A. Mollabashi, T. Takayanagi and Y. Taki, Pseudoentropy in dS/CFT

and Timelike Entanglement Entropy, Phys. Rev. Lett. 130 (2023) 031601

[arXiv:2210.09457] [INSPIRE].

[17] B. Liu, H. Chen and B. Lian, Entanglement Entropy in Timelike Slices: a Free Fermion

Study, arXiv:2210.03134 [INSPIRE].

– 58 –

JHEP05(2023)052

[2] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,

Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[18] K. Narayan, de Sitter space, extremal surfaces and “time-entanglement”, arXiv:2210.12963

[INSPIRE].

[19] P. Wang, H. Wu and H. Yang, Fix the dual geometries of T T¯ deformed CFT2 and highly

excited states of CFT2 , Eur. Phys. J. C 80 (2020) 1117 [arXiv:1811.07758] [INSPIRE].

[20] N.L. Diaz, J.M. Matera and R. Rossignoli, Path Integrals from Spacetime Quantum Actions,

arXiv:2111.05383 [INSPIRE].

[21] K.S. Reddy, A timelike entangled island at the initial singularity in a JT FLRW (Λ > 0)

universe, arXiv:2211.14893 [INSPIRE].

[23] X. Jiang, P. Wang, H. Wu and H. Yang, Timelike entanglement entropy and T T¯

deformation, arXiv:2302.13872 [INSPIRE].

[24] A. Strominger, The dS / CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113]

[INSPIRE].

[25] D. Anninos, T. Hartman and A. Strominger, Higher Spin Realization of the dS/CFT

Correspondence, Class. Quant. Grav. 34 (2017) 015009 [arXiv:1108.5735] [INSPIRE].

[26] Y. Hikida, T. Nishioka, T. Takayanagi and Y. Taki, Holography in de Sitter Space via

Chern-Simons Gauge Theory, Phys. Rev. Lett. 129 (2022) 041601 [arXiv:2110.03197]

[INSPIRE].

[27] Y. Hikida, T. Nishioka, T. Takayanagi and Y. Taki, CFT duals of three-dimensional de

Sitter gravity, JHEP 05 (2022) 129 [arXiv:2203.02852] [INSPIRE].

[28] J. Maldacena, G.J. Turiaci and Z. Yang, Two dimensional Nearly de Sitter gravity, JHEP 01

(2021) 139 [arXiv:1904.01911] [INSPIRE].

[29] J. Cotler, K. Jensen and A. Maloney, Low-dimensional de Sitter quantum gravity, JHEP 06

(2020) 048 [arXiv:1905.03780] [INSPIRE].

[30] K. Narayan, Extremal surfaces in de Sitter spacetime, Phys. Rev. D 91 (2015) 126011

[arXiv:1501.03019] [INSPIRE].

[31] Y. Sato, Comments on Entanglement Entropy in the dS/CFT Correspondence, Phys. Rev. D

91 (2015) 086009 [arXiv:1501.04903] [INSPIRE].

[32] M. Miyaji and T. Takayanagi, Surface/State Correspondence as a Generalized Holography,

PTEP 2015 (2015) 073B03 [arXiv:1503.03542] [INSPIRE].

[33] K. Narayan, On extremal surfaces and de Sitter entropy, Phys. Lett. B 779 (2018) 214

[arXiv:1711.01107] [INSPIRE].

[34] K. Narayan, de Sitter future-past extremal surfaces and the entanglement wedge, Phys. Rev.

D 101 (2020) 086014 [arXiv:2002.11950] [INSPIRE].

[35] Y. Nakata, T. Takayanagi, Y. Taki, K. Tamaoka and Z. Wei, New holographic generalization

of entanglement entropy, Phys. Rev. D 103 (2021) 026005 [arXiv:2005.13801] [INSPIRE].

[36] A. Mollabashi, N. Shiba, T. Takayanagi, K. Tamaoka and Z. Wei, Pseudo Entropy in Free

Quantum Field Theories, Phys. Rev. Lett. 126 (2021) 081601 [arXiv:2011.09648] [INSPIRE].

[37] G. Camilo and A. Prudenziati, Twist operators and pseudo entropies in two-dimensional

momentum space, arXiv:2101.02093 [INSPIRE].

– 59 –

JHEP05(2023)052

[22] Z. Li, Z.-Q. Xiao and R.-Q. Yang, On holographic time-like entanglement entropy, JHEP 04

(2023) 004 [arXiv:2211.14883] [INSPIRE].

[38] A. Mollabashi, N. Shiba, T. Takayanagi, K. Tamaoka and Z. Wei, Aspects of pseudoentropy

in field theories, Phys. Rev. Res. 3 (2021) 033254 [arXiv:2106.03118] [INSPIRE].

[39] T. Nishioka, T. Takayanagi and Y. Taki, Topological pseudo entropy, JHEP 09 (2021) 015

[arXiv:2107.01797] [INSPIRE].

[40] K. Goto, M. Nozaki and K. Tamaoka, Subregion spectrum form factor via pseudoentropy,

Phys. Rev. D 104 (2021) L121902 [arXiv:2109.00372] [INSPIRE].

[41] M. Miyaji, Island for gravitationally prepared state and pseudo entanglement wedge, JHEP

12 (2021) 013 [arXiv:2109.03830] [INSPIRE].

[43] M. Berkooz, N. Brukner, S.F. Ross and M. Watanabe, Going beyond ER=EPR in the SYK

model, JHEP 08 (2022) 051 [arXiv:2202.11381] [INSPIRE].

[44] I. Akal, T. Kawamoto, S.-M. Ruan, T. Takayanagi and Z. Wei, Zoo of holographic moving

mirrors, JHEP 08 (2022) 296 [arXiv:2205.02663] [INSPIRE].

[45] T. Mori, H. Manabe and H. Matsueda, Entanglement distillation toward minimal bond cut

surface in tensor networks, Phys. Rev. D 106 (2022) 086008 [arXiv:2205.06633] [INSPIRE].

[46] J. Mukherjee, Pseudo Entropy in U(1) gauge theory, JHEP 10 (2022) 016

[arXiv:2205.08179] [INSPIRE].

[47] W.-z. Guo, S. He and Y.-X. Zhang, On the real-time evolution of pseudo-entropy in 2d CFTs,

JHEP 09 (2022) 094 [arXiv:2206.11818] [INSPIRE].

[48] Y. Ishiyama, R. Kojima, S. Matsui and K. Tamaoka, Notes on pseudo entropy amplification,

PTEP 2022 (2022) 093B10 [arXiv:2206.14551] [INSPIRE].

[49] M. Miyaji and C. Murdia, Holographic BCFT with a Defect on the End-of-the-World brane,

JHEP 11 (2022) 123 [arXiv:2208.13783] [INSPIRE].

[50] A. Bhattacharya, A. Bhattacharyya and S. Maulik, Pseudocomplexity of purification for free

scalar field theories, Phys. Rev. D 106 (2022) 086010 [arXiv:2209.00049] [INSPIRE].

[51] W.-z. Guo, S. He and Y.-X. Zhang, Constructible reality condition of pseudo entropy via

pseudo-Hermiticity, arXiv:2209.07308 [INSPIRE].

[52] S. He, J. Yang, Y.-X. Zhang and Z.-X. Zhao, Pseudo-entropy for descendant operators in

two-dimensional conformal field theories, arXiv:2301.04891 [INSPIRE].

[53] P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.

0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

[54] J. Cotler and A. Strominger, Cosmic ER=EPR in dS/CFT, arXiv:2302.00632 [INSPIRE].

[55] T. Azeyanagi, T. Nishioka and T. Takayanagi, Near Extremal Black Hole Entropy as

Entanglement Entropy via AdS(2)/CFT(1), Phys. Rev. D 77 (2008) 064005

[arXiv:0710.2956] [INSPIRE].

[56] H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42

(2009) 504007 [arXiv:0905.2562] [INSPIRE].

[57] I. Peschel and V. Eisler, Reduced density matrices and entanglement entropy in free lattice

models, J. Phys. A 42 (2009) 504003 [arXiv:0906.1663].

– 60 –

JHEP05(2023)052

[42] I. Akal, T. Kawamoto, S.-M. Ruan, T. Takayanagi and Z. Wei, Page curve under final state

projection, Phys. Rev. D 105 (2022) 126026 [arXiv:2112.08433] [INSPIRE].

[58] M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010)

126010 [arXiv:1006.0047] [INSPIRE].

[59] M. Rangamani and T. Takayanagi, Holographic Entanglement Entropy, Lect. Notes Phys.

931 (2017) 1.

[60] I.A. Morrison and M.M. Roberts, Mutual information between thermo-field doubles and

disconnected holographic boundaries, JHEP 07 (2013) 081 [arXiv:1211.2887] [INSPIRE].

[61] T. Hartman, Entanglement Entropy at Large Central Charge, arXiv:1303.6955 [INSPIRE].

[63] S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067

[arXiv:1306.0622] [INSPIRE].

[64] P. Caputa, J. Simón, A. Štikonas, T. Takayanagi and K. Watanabe, Scrambling time from

local perturbations of the eternal BTZ black hole, JHEP 08 (2015) 011 [arXiv:1503.08161]

[INSPIRE].

[65] C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Holographic Entanglement Entropy

from 2d CFT: Heavy States and Local Quenches, JHEP 02 (2015) 171 [arXiv:1410.1392]

[INSPIRE].

[66] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

[67] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150] [INSPIRE].

[68] J.B. Hartle and S.W. Hawking, Wave Function of the Universe, Phys. Rev. D 28 (1983) 2960

[INSPIRE].

[69] J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary

models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].

[70] J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic

Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104

(1986) 207 [INSPIRE].

[71] V. Chandrasekaran, R. Longo, G. Penington and E. Witten, An algebra of observables for de

Sitter space, JHEP 02 (2023) 082 [arXiv:2206.10780] [INSPIRE].

[72] P. Caputa, J. Simón, A. Štikonas, T. Takayanagi and K. Watanabe, Scrambling time from

local perturbations of the eternal BTZ black hole, JHEP 08 (2015) 011 [arXiv:1503.08161]

[INSPIRE].

[73] Y. Kusuki and T. Takayanagi, Renyi entropy for local quenches in 2D CFT from numerical

conformal blocks, JHEP 01 (2018) 115 [arXiv:1711.09913] [INSPIRE].

– 61 –

JHEP05(2023)052

[62] T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole

Interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る