リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Nectar microbes may indirectly change fruit consumption by seed-dispersing birds」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Nectar microbes may indirectly change fruit consumption by seed-dispersing birds

Tsuji, Kaoru 辻, かおる ツジ, カオル 神戸大学

2023.08

概要

An increasing number of recent studies show that nectar-inhabiting microorganisms influence plant fitness by mediating interactions between plants and pollinators. However, whether the effects of nectar microbes extend beyond pollination to affect subsequent stages of plant reproduction remains largely unknown. This study aims to explore whether nectar microbes can indirectly affect fruit consumption by birds, which can be essential for seed dispersal and germination. Wild flowers of Eurya japonica trees were experimentally inoculated with the nectar-inhabiting yeast Metschnikowia reukaufii and the nectar-inhabiting bacterium Acinetobacter boissieri, both of which had been previously isolated frequently from E. japonica flowers. In this experiment, I examined whether these microbes changed female reproductive success of the understory tree. Experimental inoculation of flowers with yeasts decreased fruit and seed set compared to those inoculated with bacteria, and the control. Furthermore, fruits with higher seed set tended to be larger, and larger fruits were more likely to be consumed by seed-dispersing birds, including the Japanese white-eye Zosterops japonica, the brown-eared bulbul Hypsipetes amaurotis, and the Daurian redstart Phoenicurus auroreus. These results suggest that nectar-inhabiting microorganisms have the potential to affect plant reproduction by influencing not only plant-pollinator interactions, but also by indirectly modifying plant-frugivore interactions via changes in plant-pollinator interactions.

この論文で使われている画像

参考文献

Alvarez-P

erez, S., Lievens, B., Jacquemyn, H., &

Herrera, C. M. (2013). Acinetobacter nectaris sp. nov. and Acinetobacter boissieri sp. nov., two novel bacterial species isolated from floral nectar of wild Mediterranean insect-pollinated

plants. International Journal of Systematic and Evolutionary

Microbiology, 63, 1532–1539. doi:10.1099/ijs.0.043489-0.

Alvarez-P

erez, S., Tsuji, K., Donald, M., Van Assche, A.,

Vannette, R. L., Herrera, C. M., Jacquemyn, H., Fukami, T., &

Lievens, B (2021). Nitrogen assimilation varies among clades

of nectar- and insect-associated acinetobacters. Microbial Ecology, 81, 990–1003. doi:10.1007/s00248-020-01671-x.

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting

linear mixed-effects models using lme4. Journal of Statistical

Software, 67, 1–48. doi:10.18637/jss.v067.i01.

Buccheri, M., & Di Vaio, C. (2005). Relationship among seed

number, quality, and calcium content in apple fruits. Journal of

Plant Nutrition, 27, 1735–1746. doi:10.1081/PLN-200026409.

Cawthon, D. L., & Morris, J. R. (1982). Relationship of seed number and maturity to berry development, fruit maturation, hormonal changes, and uneven ripening of ‘Concord’ (Vitis

labrusca L.) Grapes. Journal of the American Society for Horticultural

Science,

107,

1097–1104.

doi:10.21273/

JASHS.107.6.1097.

Chappell, C. R., Dhami, M. K., Bitter, M. C., Czech, L.,

Herrera Paredes, S., Barrie, F. B., Calderon, Y., Eritano, K.,

Golden, L.-A., Hekmat-Scafe, D., Hsu, V., Kieschnick, C.,

Malladi, S., Rush, N., & Fukami, T. (2022). Wide-ranging consequences of priority effects governed by an overarching driver.

eLife, 11, e79647. doi:10.7554/eLife.79647.

Christensen, S. M., Munkres, I., & Vannette, R. L. (2021). Nectar

bacteria stimulate pollen germination and bursting to enhance

microbial fitness. Current Biology, 31, 4373–4380.

doi:10.1016/j.cub.2021.07.016.

Chung, M. G., & Chung, M. Y. (2000). Levels and partitioning of

genetic diversity in populations of Eurya japonica and Eurya

emarginata (Theaceae) in Korea and Japan. International Journal of Plant Sciences, 161, 699–704. doi:10.1086/314290.

67

Cusumano, A., Bella, P., Peri, E., Rostas, M., Guarino, S.,

Lievens, B., & Colazza, S. (2022). Nectar-inhabiting bacteria

affect olfactory responses of an insect parasitoid by altering

nectar odors. Microbial Ecology. doi:10.1007/s00248-02202078-6.

De Vega, C. D., & &Herrera, C. M (2013). Microorganisms transported by ants induce changes in floral nectar composition of an

ant-pollinated plant. American Journal of Botany, 100, 792–

800. doi:10.3732/ajb.1200626.

Eccher, G., Ferrero, S., Populin, F., Colombo, L., &

Botton, A. (2014). Apple (Malus domestica L. Borkh) as an

emerging model for fruit development. Plant Biosystems, 148,

157–168. doi:10.1080/11263504.2013.870254.

Eisikowitch, D., Kevan, P. G., & Lachance, M. A. (1990). The nectar-inhabiting yeasts and their effect on pollen germination in

common milkweed. Asclepias syriaca L. Israel Journal of Botany, 39, 217–225. doi:10.1080/0021213X.1990.10677145.

Fox, J., & Weisberg, S. (2011). An R companion to applied regression (2nd edition). Thousand Oaks California: Sage.

Good, A. P., Gauthier, M. P. L., Vannette, R. L., &

Fukami, T. (2014). Honey bees avoid nectar colonized by three

bacterial species, but not by a yeast species, isolated from the

bee gut. PLoS One, 9, e86494. doi:10.1371/journal.

pone.0086494.

Gorchov, D. L. (1985). Fruit ripening asynchrony is related to variable seed number in Amelanchier and Vaccinium. Ametican

Journal of Botany, 7, 1939–1943. doi:10.1002/j.15372197.1985.tb08467.x.

Gorchov, D. L. (1988). Effects of pollen and resources on seed

number and other fitness components in Amelanchier arborea

(Rosaceae: Maloideae). Ametican Journal of Botany, 75, 1275–

1285. doi:10.2307/2444449.

Gouthu, S., & Deluc, L. G. (2015). Timing of ripening initiation in

grape berries and its relationship to seed content and pericarp

auxin levels. BMC Plant Biology, 15, 46. doi:10.1186/s12870015-0440-6.

Herrera, C. M. (1989). Seed dispersal by animals: a role in angiosperm diversification? The American Naturalist, 133, 309–322.

Herrera, C. M., Pozo, M. I., & Medrano, M. (2013). Yeasts in nectar of an early-blooming herb: sought by bumble bees, detrimental to plant fecundity. Ecology, 94, 273–279. doi:10.1890/

12-0595.1.

Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal, 50,

346–363. doi:10.1002/bimj.200810425.

Howpage, D., Spooner-Hart, R. N., & Vithanage, V. (2001). Influence of honey bee (Apis mellifera) on kiwifruit pollination and

fruit quality under Australian conditions. New Zealand Journal

of Crop and Horticultural Science, 29, 51–59. doi:10.1080/

01140671.2001.9514160.

J€

urgens, A., D€

otterl, S., & Meve, U. (2006). The chemical nature of

fetid

floral

odours

in

stapeliads

(Apocynaceae

Asclepiadoideae -Ceropegieae). New Phytologist, 172, 452–

468. doi:10.1111/j.1469-8137.2006.01845.x.

J€

urgens, A., Wee, S. L., Shuttleworth, A., & Johnson, S. D. (2013).

Chemical mimicry of insect oviposition sites: a global analysis

of convergence in angiosperms. Ecology Letters, 16, 1157–

1167. doi:10.1111/ele.12152.

Krefting, L. W., & Roe, E. (1949). The role of some birds and

mammals in seed germination. Ecological Monographs, 19,

284–286. doi:10.2307/1943538.

68

K. Tsuji / Basic and Applied Ecology 70 (2023) 60 69

Langsrud, Ø. (2003). ANOVA for unbalanced data: Use Type II

instead of Type III sums of squares. Statistics and Computing,

13, 163–167. doi:10.1023/A:1023260610025.

Lefcheck, J. S. (2016). PiecewiseSEM: Piecewise structural equation modeling in R for ecology, evolution, and systematics.

Methods in Ecology and Evolution, 7, 573–579. doi:10.1111/

2041-210X.12512.

Lenth, V. R. (2016). Least-squares means: The R package lsmeans.

Journal of Statistical Software, 69, 1–33. doi:10.18637/jss.

v069.i01.

Manabe, T., Yamamoto, S., & Chiba, K. (1992). Seed dispersal of

evergreen small tree, Eurya japonica, in a Quercus serrata secondary forest. Journal of the Japanese Society of Revegetation

Technology, 18, 154–161. doi:10.7211/jjsrt.18.154.

Martin, V. N., Schaeffer, R. N., & Fukami, T. (2022). Potential

effects of nectar microbes on pollinator health. Philosophical

Transactions of the Royal Society B: Biological Sciences, 377,

20210155. doi:10.1098/rstb.2021.0155.

Obeso, J. R. (1993). Selective fruit and seed maturation in Asphodelus albus Miller (Liliaceae). Oecologia, 93, 564–570.

doi:10.1007/BF00328966.

Perez-Alvarez, R., Nault, B. A., & Poveda, K. (2018). Contrasting

effects of landscape composition on crop yield mediated by specialist herbivores. Ecological Applications, 28, 842–853.

doi:10.1002/eap.1695.

Picken, A. J. F. (1984). A review of pollination and fruit set in the

tomato (Lycopersicon esculentum Mill.). Journal of Horticultural

Science, 59, 1–13. doi:10.1080/00221589.1984.11515163.

R Core Team. (2020). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical

Computing. https://www.R-project.org/.

Rebolleda-Gomez, M., Forrester, N. J., Russell, A. L., Wei, N.,

Fetters, A. M., Stephens, J. D., & Ashman, T. L. (2019). Gazing

into the anthosphere: considering how microbes influence floral

evolution. New Phytologist, 224, 1012–1020. doi:10.1111/

nph.16137.

Rering, C. C., Beck, J. J., Hall, G. W., McCartney, M. M., &

Vannette, R. L. (2017). Nectar-inhabiting microorganisms influence nectar volatile composition and attractiveness to a generalist pollinator. New Phytologist, 220, 750–759. doi:10.1111/

nph.14809.

Rering, C. C., Schaeffer, R., Vannette, R. L., & Beck, J. J. (2020).

Microbial co-occurrence in floral nectar affects metabolites and

attractiveness to a generalist pollinator. Journal of Chemical

Ecology, 46, 659–667. doi:10.1007/s10886-020-01169-3.

Rering, C. C., Rudolph, A. B., & Beck, J. J. (2021). Pollen and

yeast change nectar aroma and nutritional content alone and

together, but honey bee foraging reflects only the avoidance of

yeast. Environmental Microbiology, 23, 4141–4150.

doi:10.1111/1462-2920.15528.

Ruxton, G. D., & Schaefer, H. M. (2012). The conservation physiology of seed dispersal. Philosophical Transactions of the

Royal Society B, 367, 1708–1718. doi:10.1098/rstb.2012.0001.

Schaeffer, R. N., & Irwin, R. E. (2014). Yeasts in nectar enhance

male fitness in a montane perennial herb. Ecology, 97, 1792–

1798. doi:10.1890/13-1740.1.

Schaeffer, R. N., Rering, C. C., Maalouf, I., Beck, J. J., &

Vannette, R. L. (2019). Microbial metabolites elicit distinct

olfactory and gustatory preferences in bumblebees. Biology Letters, 15, 20190132. doi:10.1098/rsbl.2019.0132.

Shuttleworth, A., & Johnson, S. D. (2010). The missing stink: sulphur compounds can mediate a shift between fly and wasp pollination systems. Proceedings of the Royal Society B: Biological

Sciences, 277, 2811–2819. doi:10.1098/rspb.2010.0491.

Sugimura, Y., & Yata, Y. (2003). Eurya vitiensis A. Gray, new to

Vanuatu. Bunrui, 3, 95–105.

Traveset, A. (1998). Effect of seed passage through vertebrate frugivores’ guts on germination: a review. Perspectives in Plant

Ecology, Evolution and Systematics, 1, 151–190. doi:10.1078/

1433-8319-00057.

Traveset, A., Riera, N., & Mas, R. E. (2001). Passage through bird

guts causes interspecific differences in seed germination characteristics. Functional Ecology, 15, 669–675. doi:10.1046/j.02698463.2001.00561.x.

Tsuji, K., & Sota, T. (2010). Sexual differences in flower defense

and correlated male-biased florivory in a plant-florivore system.

Oikos, 119, 1848–1853. doi:10.1111/j.1600-0706.2010.18585.

x.

Tsuji, K., & Sota, T. (2011). Geographic variation in oviposition

preference for male and female host plants in a geometrid moth:

implications for evolution of host choice. Entomologia Experimentalis et Applicata, 141, 178–184. doi:10.1111/j.15707458.2011.01183.x.

Tsuji, K., & Sota, T. (2013). Florivores on the dioecious shrub

Eurya japonica and the preferences and performances of two

polyphagous geometrid moths on male and female plants. Entomological Science, 16, 291–297. doi:10.1111/ens.12019.

Tsuji, K., & Fukami, T. (2018). Community-wide consequences of

sexual dimorphism: evidence from nectar microbes in dioecious

plants. Ecology, 99, 2476–2484. doi:10.1002/ecy.2494.

Tsuji, K., & Ohgushi, T. (2018). Florivory indirectly decreases the

plant reproductive output through changes in pollinator attraction. Ecology and Evolution, 8, 2993–3001. doi:10.1002/

ece3.3921.

Tsuji, K., Kobayashi, K., Hasegawa, E., & Yoshimura, J. (2020).

Dimorphic flowers modify the visitation order of pollinators

from male to female flowers. Scientific Reports, 10, 1–11.

doi:10.1038/s41598-020-66525-5.

Urru, I., Stensmyr, M. C., & Hansson, B. S. (2011). Pollination by

brood-site deception. Phytochemistry, 72, 1655–1666.

doi:10.1016/j.phytochem.2011.02.014.

Vannette, R. L., Gauthier, M. P. L., & Fukami, T. (2013). Nectar

bacteria, but not yeast, weaken a plant-pollinator mutualism.

Proceedings of the Royal Society B: Biological Sciences, 280,

20122601. doi:10.1098/rspb.2012.2601.

Vannette, R. L., & Fukami, T. (2018). Contrasting effects of yeasts

and bacteria on floral nectar traits. Annals of Botany, 121,

1343–1349. doi:10.1093/aob/mcy032.

Vannette, R. L. (2020). The floral microbiome: plant, pollinator,

and microbial perspectives. The Annual Review of Ecology,

Evolution, and Systematics, 51, 363–386. doi:10.1146/annurevecolsys-011720-013401.

Wang, H., Matsushita, M., Tomaru, N., & Nakagawa, M. (2016).

Sex change in the subdioecious shrub Eurya japonica (Pentaphylacaceae). Ecology and Evolution, 7, 2340–2345.

doi:10.1002/ece3.2745.

Yang, M., Deng, G. C., Gong, Y. B., & Huang, S. Q. (2019). Nectar yeasts enhance the interaction between Clematis akebioides

and its bumblebee pollinator. Plant Biology, 21, 732–737.

doi:10.1111/plb.12957.

K. Tsuji / Basic and Applied Ecology 70 (2023) 60 69

Zito, P., Guarino, S., Peri, E., Sajeva, M., & Colazza, S. (2013).

Electrophysiological and behavioural responses of the housefly

to sweet volatiles of the flowers of Caralluma europaea (Guss.)

N.E. Br. Arthropod-Plant Interactions, 7, 485–489.

doi:10.1007/s11829-013-9270-3.

69

Zito, P., D€

otterl, S., & Sajeva, M. (2015). Floral volatiles in a Sapromyiophilous plant and their importance in attracting house fly

pollinators. Journal of Chemical Ecology, 41, 340–349.

doi:10.1007/s10886-015-0568-8.

Available online at www.sciencedirect.com

ScienceDirect

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る