リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「No Effect of Selective Maturation on Fruit Traits for a Bird-Dispersed Species, Sambucus racemosa」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

No Effect of Selective Maturation on Fruit Traits for a Bird-Dispersed Species, Sambucus racemosa

Koyama Kohei Tashiro Mayu 帯広畜産大学

2022.06.14

概要

Selective abortion, also called selective maturation, is a phenomenon wherein maternal plants selectively mature ovules that have the potential to grow into higher-quality fruits, such as those that contain more seeds. We hypothesized that the effects of selective maturation on fruit traits could be influenced by the dispersal mechanism. However, to date, limited studies have been conducted on selective maturation in bird-dispersed fruits. Unlike self- or wind-dispersed species, bird-dispersed species would not selectively mature fruits that contain more seeds because they are not preferred by birds. Here, we investigated the effect of selective abortion on the fruit traits of a bird-dispersed species, elderberry (Sambucus racemosa L. subsp. kamtschatica). We performed a flower-removal experiment. Half of the inflorescences on each individual tree were removed for the treatment group, whereas the control group was not manipulated. We found that the flower-removed trees showed higher fruit sets, suggesting the existence of resource limitation. The number of seeds per fruit did not increase by the experimental treatment. Additionally, the control individuals did not produce larger fruits. The lack of effects on fruit traits supported our hypothesis that the effect of selective maturation on fruit traits may differ among species with different dispersal mechanisms.

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Janzen, D.H. A Note on Optimal Mate Selection by Plants. Am. Nat. 1977, 111, 365–371. [CrossRef]

Stephenson, A.G. Flower and fruit abortion: Proximate causes and ultimate functions. Ann. Rev. Ecol. Syst. 1981, 12, 253–279.

[CrossRef]

Lee, T.D.; Bazzaz, F.A. Regulation of fruit and seed production in an annual legume, Cassia fasciculata. Ecology 1982, 63, 1363–1373.

[CrossRef]

Collevatti, R.G.; Lopes, F.S.; Amaral, M.E.C. Reproductive success in the tropical weed Triumfetta semitriloba (Tiliaceae): Spatial

and temporal variation in seed set. Rev. Biol. Trop. 1997, 1395–1399.

Díaz, M.; Møller, A.P.; Pulido, F.J. Fruit abortion, developmental selection and developmental stability in Quercus ilex. Oecologia

2003, 135, 378–385. [CrossRef]

Baskin, J.M.; Baskin, C.C. Effect of selective abortion on seed germination and post-germination performance of offspring.

Seed Sci. Res. 2019, 29, 210–214. [CrossRef]

Bertin, R.I. Paternity and fruit production in trumpet creeper (Campsis radicans). Am. Nat. 1982, 119, 694–709. [CrossRef]

Wiens, D.; Calvin, C.; Wilson, C.; Davern, C.; Frank, D.; Seavey, S.R. Reproductive success, spontaneous embryo abortion, and

genetic load in flowering plants. Oecologia 1987, 71, 501–509. [CrossRef]

Boavida, L.C.; Silva, J.P.; Feijó, J.A. Sexual reproduction in the cork oak (Quercus suber L). II. Crossing intra- and interspecific

barriers. Sex. Plant Reprod. 2001, 14, 143–152. [CrossRef]

Tsuruta, M.; Kato, S.; Mukai, Y. Timing of premature acorn abortion in Quercus serrata Thunb. is related to mating pattern, fruit

size, and internal fruit development. J. For. Res. 2011, 16, 492–499. [CrossRef]

Plants 2021, 10, 376

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

10 of 12

Ezoe, H. Excessive flower production as an anti-predator strategy: When is random flower abortion favored? Popul. Ecol. 2018,

60, 275–286. [CrossRef]

Niesenbaum, R.A. The effects of pollen load size and donor diversity on pollen performance, selective abortion, and progeny

vigor in Mirabilis jalapa (Nyctaginaceae). Am. J. Bot. 1999, 86, 261–268. [CrossRef] [PubMed]

Pflugshaupt, K.; Kollmann, J.; Fischer, M.; Roy, B. Pollen quantity and quality affect fruit abortion in small populations of a rare

fleshy-fruited shrub. Basic Appl. Ecol. 2002, 3, 319–327. [CrossRef]

Collevatti, R.G.; Estolano, R.; Garcia, S.F.; Hay, J.D. Seed abortion in the bat pollinated Neotropical tree species, Caryocar brasiliense

(Caryocaraceae). Botany 2009, 87, 1110–1115. [CrossRef]

Collevatti, R.G.; Amara, M.E.C.; Lopes, F.S. Role of pollinators in seed set and a test of pollen limitation hypothesis in the tropical

weed Triumfetta semitriloba (Tiliaceae). Rev. Biol. Trop. 1997, 1401–1407.

Díaz, M.; Pulido, F.J.; Møller, A.P. Herbivore effects on developmental instability and fecundity of holm oaks. Oecologia 2004,

139, 224–234. [CrossRef] [PubMed]

Buchholz, J.T. Developmental selection in vascular plants. Bot. Gaz. 1922, 73, 249–286. [CrossRef]

Stephenson, A.G.; Winsor, J.A. Lotus corniculatus regulates offspring quality through selective fruit abortion. Evolution 1986,

40, 453–458. [CrossRef]

Torres, C.; Eynard, M.C.; Aizen, M.A.; Galetto, L. Selective fruit maturation and seedling performance in Acacia caven (Fabaceae).

Int. J. Plant Sci. 2002, 163, 809–813. [CrossRef]

Guitian, J. Why Prunus mahaleb (Rosaceae) produces more flowers than fruits. Am. J. Bot. 1993, 80, 1305–1309. [CrossRef]

Guitian, J. Selective fruit abortion in Prunus mahaleb (Rosaceae). Am. J. Bot. 1994, 81, 1555–1558. [CrossRef]

Thompson, J.D.; Dommée, B. Sequential variation in the components of reproductive success in the distylous Jasminum fruticans

(Oleaceae). Oecologia 1993, 94, 480–487. [CrossRef]

Bookman, S.S. Evidence for selective fruit production in Asclepias. Evolution 1984, 38, 72–86. [CrossRef]

Obeso, J.R. Selective fruit and seed maturation in Asphodelus albus Miller (Liliaceae). Oecologia 1993, 93, 564–570. [CrossRef]

[PubMed]

Rocha, O.J.; Stephenson, A.G. Effects of nonrandom seed abortion on progeny performance in Phaseolus coccineus L. Evolution

1991, 45, 1198–1208. [CrossRef] [PubMed]

Gutiérrez, D.; Menéndez, R.; Obeso, J.R. Effect of ovule position on seed maturation and seed weight in Ulex europaeus and Ulex

gallii (Fabaceae). Can. J. Bot. 1996, 74, 848–853. [CrossRef]

Mena-AlÍ, J.I.; Rocha, O.J. Selective seed abortion affects the performance of the offspring in Bauhinia ungulata. Ann. Bot. 2005,

95, 1017–1023. [CrossRef] [PubMed]

Casper, B.B. Evidence for selective embryo abortion in Cryptantha flava. Am. Nat. 1988, 132, 318–326. [CrossRef]

Korbecka, G.; Klinkhamer, P.G.L.; Vrieling, K. Selective embryo abortion hypothesis revisited—a molecular approach. Plant Biol.

2002, 4, 298–310. [CrossRef]

Nakamura-Yamaguchi, A.; Kitahata, N.; Nishitani, C.; Takada, N.; Terakami, S.; Sawamura, Y.; Matsuyama, T.; Asami, T.; Nakano,

T.; Saito, T.; et al. Pattern and trigger of fruit self-thinning in Japanese pears. Hortic. J. 2020, 89, 367–374. [CrossRef]

Burd, M. Offspring quality in relation to excess flowers in Pultenaea gunnii (Fabaceae). Evolution 2004, 58, 2371–2376. [CrossRef]

[PubMed]

Burd, M. “Excess” flower production and selective fruit abortion: A model of potential benefits. Ecology 1998, 79, 2123–2132.

[CrossRef]

Lee, T.D. Patterns of fruit maturation: A gametophyte competition hypothesis. Am. Nat. 1984, 123, 427–432. [CrossRef]

Bawa, K.S.; Webb, C.J. Flower, fruit and seed abortion in tropical forest trees: Implications for the evolution of paternal and

maternal reproductive patterns. Am. J. Bot. 1984, 71, 736–751. [CrossRef]

Howe, H.F.; Kerckhove, G.A.V. Nutmeg dispersal by tropical birds. Science 1980, 210, 925. [CrossRef]

Sobral, M.; Larrinaga, A.R.; Guitián, J. Do seed-dispersing birds exert selection on optimal plant trait combinations? Correlated

phenotypic selection on the fruit and seed size of hawthorn (Crataegus monogyna). Evol. Ecol. 2010, 24, 1277–1290. [CrossRef]

Valenta, K.; Nevo, O. The dispersal syndrome hypothesis: How animals shaped fruit traits, and how they did not. Funct. Ecol.

2020, 34, 1158–1169. [CrossRef]

Alcántara, J.M.; Rey, P.J. Conflicting selection pressures on seed size: Evolutionary ecology of fruit size in a bird-dispersed tree,

Olea europaea. J. Evol. Biol. 2003, 16, 1168–1176. [CrossRef] [PubMed]

Herrera, C.M.; Jordano, P. Prunus mahaleb and birds: The high-efficiency seed dispersal system of a temperate fruiting tree.

Ecol. Monogr. 1981, 51, 203–218. [CrossRef]

Jordano, P.; Schupp, E.W. Seed disperser effectiveness: The quantity component and patterns of seed rain for Prunus mahaleb.

Ecol. Monogr. 2000, 70, 591–615. [CrossRef]

Guitián, J.; Guitián, P.; Medrano, M. Floral biology of the distylous Mediterranean shrub Jasminum fruticans (Oleaceae). Nord. J. Bot.

1998, 18, 195–201. [CrossRef]

De Araujo, F.D. A review of Caryocar brasiliense (caryocaraceae)—an economically valuable species of the central brazilian

cerrados. Econ. Bot. 1995, 49, 40–48. [CrossRef]

Gómez, J.M. Spatial patterns in long-distance dispersal of Quercus ilex acorns by jays in a heterogeneous landscape. Ecography

2003, 26, 573–584. [CrossRef]

Plants 2021, 10, 376

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

11 of 12

Pulido, F.J.; Díaz, M. Regeneration of a Mediterranean oak: A whole-cycle approach. Écoscience 2016, 12, 92–102. [CrossRef]

Masaki, T.; Nakashizuka, T.; Niiyama, K.; Tanaka, H.; Iida, S.; Bullock, J.M.; Naoe, S. Impact of the spatial uncertainty of seed

dispersal on tree colonization dynamics in a temperate forest. Oikos 2019, 128, 1816–1828. [CrossRef]

Zeng, D.; Swihart, R.K.; Zhao, Y.; Si, X.; Ding, P. Cascading effects of forested area and isolation on seed dispersal effectiveness of

rodents on subtropical islands. J. Ecol. 2019, 107, 1506–1517. [CrossRef]

Winsor, J.A.; Davis, L.E.; Stephenson, A.G. The relationship between pollen load and fruit maturation and the effect of pollen

load on offspring vigor in Cucurbita pepo. Am. Nat. 1987, 129, 643–656. [CrossRef]

Kistler, L.; Newsom, L.A.; Ryan, T.M.; Clarke, A.C.; Smith, B.D.; Perry, G.H. Gourds and squashes (Cucurbita spp.) adapted to

megafaunal extinction and ecological anachronism through domestication. Proc. Natl. Acad. Sci. USA 2015, 112, 15107–15112.

[CrossRef] [PubMed]

Case, S.B.; Tarwater, C.E. Functional traits of avian frugivores have shifted following species extinction and introduction in the

Hawaiian Islands. Funct. Ecol. 2020, 34, 2467–2476. [CrossRef]

Gómez, J.M. Bigger is not always better: Conflicting selective pressures on seed size in Quercus ilex. Evolution 2004, 58, 71–80.

[CrossRef] [PubMed]

Costa, G.; Botton, A.; Vizzotto, G. Fruit thinning: Advances and trends. In Hortic. Rev.; Warrington, I., Ed.; Wiley: Hboken, NJ,

USA, 2018; Volume 46, pp. 185–226.

Einhorn, T.C.; Arrington, M. ABA and Shading Induce ‘Bartlett’ Pear Abscission and Inhibit Photosynthesis but Are Not Additive.

J. Plant Growth Regul. 2018, 37, 300–308. [CrossRef]

Kundu, A.; Vadassery, J. Chlorogenic acid-mediated chemical defence of plants against insect herbivores. Plant Biol. 2019,

21, 185–189. [CrossRef] [PubMed]

Valtueña, F.J.; Ortega-Olivencia, A.; Rodríguez-Riaño, T. Germination and seed bank biology in some Iberian populations of

Anagyris foetida L. (Leguminosae). Plant Syst. Evol. 2008, 275, 231. [CrossRef]

Valtueña, F.J. Personal Communication; Universidad de Extremadura: Badajoz, Extremadura, Spain, 2020.

Valtueña, F.J.; Ortega-Olivencia, A.; Rodríguez-Riaño, T. Regulation of fruit and seed set in Anagyris foetida L. (Fabaceae): The role

of intrinsic factors. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2012, 146, 190–200. [CrossRef]

Hodgson, W. Agavaceae Agave Family: Part One: Agave L. Century Pant, Maguey. J. Ariz.-Nev. Acad. Sci. 1999, 32, 1–21.

Sutherland, S.D. Why hermaphroditic plants produce many more flowers than fruits: Experimental tests with Agave mckelveyana.

Evolution 1987, 41, 750–759. [CrossRef]

Andersson, S. No evidence for selective seed maturation in Anchusa officinalis (Boraginaceae). Oikos 1990, 57, 88–93. [CrossRef]

Andersson, S. Personal Communication; Lund University: Lund, Sweden, 2020.

Andersson, S. The cost of floral attractants in Achillea ptarmica (Asteraceae): Evidence from a ray removal experiment. Plant Biol.

1999, 1, 569–572. [CrossRef]

Andersson, S. The potential for selective seed maturation in Achillea ptarmica (Asteraceae). Oikos 1993, 66, 36–42. [CrossRef]

Bookman, S.S. Costs and benefits of flower abscission and fruit abortion in Asclepias speciosa. Am. J. Bot. 1983, 70, 897–905.

[CrossRef]

Collevatti, R.G.; Grattapaglia, D.; Hay, J.D. High resolution microsatellite based analysis of the mating system allows the detection

of significant biparental inbreeding in Caryocar brasiliense, an endangered tropical tree species. Heredity 2001, 86, 60–67. [CrossRef]

Lee, T.D. Effects of seed number per fruit on seed dispersal in Cassia fasciculata (Caesalpiniaceae). Bot. Gaz. 1984, 145, 136–139.

[CrossRef]

Chachalis, D.; Reddy, K.N. Factors affecting Campsis radicans seed germination and seedling emergence. Weed Sci. 2000,

48, 212–216. [CrossRef]

Bawa, K.S.; Frankie, G.W. Cochlospermum vitifolium (Poro-poro, Cochlospermum, Silk tree, cotton tree). In Costa Rican natural

history; Janzen, D.H., Ed.; University of Chicago Press: Chicago, IL, USA, 1983; pp. 215–216.

Berardi, A.E.; Frey, F.M.; Denton, E.M.; Wells, J.H. Betalain color morphs exhibit differential growth, defensive ability, and pollen

tube growth rates in Mirabilis jalapa (Nyctaginaceae). Int. J. Plant Sci. 2013, 174, 1229–1238. [CrossRef]

Casper, B.B. Spatial patterns of seed dispersal and postdispersal seed predation of Cryptantha flava (Boraginaceae). Am. J. Bot.

1987, 74, 1646–1655. [CrossRef]

Cortés-Flores, J.; Andresen, E.; Cornejo-Tenorio, G.; Ibarra-Manríquez, G. Fruiting phenology of seed dispersal syndromes in a

Mexican Neotropical temperate forest. For. Ecol. Manag. 2013, 289, 445–454. [CrossRef]

de Kok, R.P.J.; West, J.G. A revision of the genus Pultenaea (Fabaceae). 3. The eastern species with recurved leaves. Aust. Syst. Bot.

2004, 17, 273–326. [CrossRef]

Morimoto, J.; Kominami, R.; Koike, T. Distribution and characteristics of the soil seed bank of the black locust (Robinia pseudoacacia)

in a headwater basin in northern Japan. Landsc. Ecol. Eng. 2010, 6, 193–199. [CrossRef]

Susko, D.J. Effect of ovule position on patterns of seed maturation and abortion in Robinia pseudoacacia (Fabaceae). Can. J. Bot.

2006, 84, 1259–1265. [CrossRef]

Tybirk, K. Pollination, breeding system and seed abortion in some African acacias. Bot. J. Linn. Soc. 1993, 112, 107–137. [CrossRef]

Jara Guerrero, A.K. Ecología de la dispersión de plantas en los bosques secos del suroccidente Ecuatoriano. PhD Dissertation,

Universidad Politécnica de Madrid, Madrid, Spain, 2014.

Plants 2021, 10, 376

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

12 of 12

Francis, J.K. Wildland Shrubs of the United States and Its Territories: Thamnic Descriptions, Volume 1.; U.S. Department of Agriculture,

Forest Service: Fort Collins, CO, USA, 2004.

Couturier, E. Folded isometric deformations and banana-shaped seedpod. Proc. R. Soc. A Math. Phys. Eng. Sci. 2016, 472,

20150760. [CrossRef] [PubMed]

Howe, H.F.; Smallwood, J. Ecology of seed dispersal. Ann. Rev. Ecol. Syst. 1982, 13, 201–228. [CrossRef]

Inoue, T.; Kato, M.; Kakutani, T.; Suka, T.; Itino, T. Insect-flower relationship in the temperate deciduous forest of Kibune, Kyoto:

An overview of the flowering phenology and the seasonal pattern of insect visits. Contrib. Biol. Lab. Kyoto Univ. 1990, 27, 377–463.

Traveset, A.; Willson, M.F. Effect of birds and bears on seed germination of fleshy-fruited plants in temperate rainforests of

southeast Alaska. Oikos 1997, 80, 89–95. [CrossRef]

Burns, K.C. A simple null model predicts fruit-frugivore interactions in a temperate rainforest. Oikos 2006, 115, 427–432. [CrossRef]

Fujimaki, Y. Food habit of hazel grouse in Hokkaido, Japan. J. Yamashina Inst. Ornithol. 2002, 34, 73–79. [CrossRef]

Japan Meteorological Agency. Available online: https://www.jma.go.jp (accessed on 2 March 2018).

R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,

2020.

Clarke, E.; Sherrill-Mix, S. Ggbeeswarm: Categorical Scatter (Violin Point) Plots. 2017.

Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016.

Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 48. [CrossRef]

Koyama, K.; Shirakawa, H.; Kikuzawa, K. Redeployment of shoots into better-lit positions within the crowns of saplings of five

species with different growth patterns. Forests 2020, 11, 1301. [CrossRef]

Barr, D.J.; Levy, R.; Scheepers, C.; Tily, H.J. Random effects structure for confirmatory hypothesis testing: Keep it maximal. J.

Mem. Lang. 2013, 68, 255–278. [CrossRef]

Deguchi, R.; Koyama, K. Photosynthetic and morphological acclimation to high and low light environments in Petasites japonicus

subsp. giganteus. Forests 2020, 11, 1365. [CrossRef]

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る